Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,156 Bytes
d457afd b53691a d457afd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import time
import torch
from transformers import (
AutoModelForPreTraining,
AutoProcessor,
AutoConfig,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import gradio as gr
MODEL_NAME = os.environ.get("MODEL_NAME", None)
assert MODEL_NAME is not None
MODEL_PATH = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors")
def fix_compiled_state_dict(state_dict: dict):
return {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
def prepare_models():
config = AutoConfig.from_pretrained(
MODEL_NAME, use_cache=True, trust_remote_code=True
)
model = AutoModelForPreTraining.from_config(
config, torch_dtype=torch.bfloat16, trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
state_dict = load_file(MODEL_PATH)
state_dict = {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.eval()
model = torch.compile(model)
return model, processor
def demo():
model, processor = prepare_models()
@torch.inference_mode()
def generate_tags(
text: str,
auto_detect: bool,
copyright_tags: str,
max_new_tokens: int = 128,
do_sample: bool = False,
temperature: float = 0.1,
top_k: int = 10,
top_p: float = 0.1,
):
tag_text = (
"<|bos|>"
"<|aspect_ratio:tall|><|rating:general|><|length:long|>"
"<|reserved_2|><|reserved_3|><|reserved_4|>"
"<|translate:exact|><|input_end|>"
"<copyright>" + copyright_tags.strip()
)
if not auto_detect:
tag_text += "</copyright><character></character><general>"
inputs = processor(
encoder_text=text, decoder_text=tag_text, return_tensors="pt"
)
start_time = time.time()
outputs = model.generate(
input_ids=inputs["input_ids"].to("cuda"),
attention_mask=inputs["attention_mask"].to("cuda"),
encoder_input_ids=inputs["encoder_input_ids"].to("cuda"),
encoder_attention_mask=inputs["encoder_attention_mask"].to("cuda"),
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
eos_token_id=processor.decoder_tokenizer.eos_token_id,
pad_token_id=processor.decoder_tokenizer.pad_token_id,
)
elapsed = time.time() - start_time
deocded = ", ".join(
[
tag
for tag in processor.batch_decode(outputs[0], skip_special_tokens=True)
if tag.strip() != ""
]
)
return [deocded, f"Time elapsed: {elapsed:.2f} seconds"]
with gr.Blocks() as ui:
with gr.Row():
with gr.Column():
text = gr.Text(label="Text", lines=4)
auto_detect = gr.Checkbox(
label="Auto detect copyright tags.", value=False
)
copyright_tags = gr.Textbox(
label="Custom tags",
placeholder="Enter custom tags here. e.g.) hatsune miku",
)
translate_btn = gr.Button(value="Translate")
with gr.Accordion(label="Advanced", open=False):
max_new_tokens = gr.Number(label="Max new tokens", value=128)
do_sample = gr.Checkbox(label="Do sample", value=False)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.1,
)
top_k = gr.Number(
label="Top k",
value=10,
)
top_p = gr.Slider(
label="Top p",
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.1,
)
with gr.Column():
output = gr.Textbox(label="Output", lines=4, interactive=False)
time_elapsed = gr.Markdown(value="")
gr.Examples(
examples=[["Miku is looking at viewer.", True]],
inputs=[text, auto_detect],
)
gr.on(
triggers=[
text.change,
auto_detect.change,
copyright_tags.change,
translate_btn.click,
],
fn=generate_tags,
inputs=[
text,
auto_detect,
copyright_tags,
max_new_tokens,
do_sample,
temperature,
top_k,
top_p,
],
outputs=[output, time_elapsed],
)
ui.launch()
if __name__ == "__main__":
demo()
|