File size: 5,156 Bytes
d457afd
 
 
 
 
 
 
 
 
 
 
 
b53691a
 
 
d457afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import time


import torch
from transformers import (
    AutoModelForPreTraining,
    AutoProcessor,
    AutoConfig,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import gradio as gr


MODEL_NAME = os.environ.get("MODEL_NAME", None)
assert MODEL_NAME is not None
MODEL_PATH = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors")


def fix_compiled_state_dict(state_dict: dict):
    return {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}


def prepare_models():
    config = AutoConfig.from_pretrained(
        MODEL_NAME, use_cache=True, trust_remote_code=True
    )
    model = AutoModelForPreTraining.from_config(
        config, torch_dtype=torch.bfloat16, trust_remote_code=True
    )
    processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)

    state_dict = load_file(MODEL_PATH)
    state_dict = {k.replace("._orig_mod.", "."): v for k, v in state_dict.items()}
    model.load_state_dict(state_dict)

    model.eval()
    model = torch.compile(model)

    return model, processor


def demo():
    model, processor = prepare_models()

    @torch.inference_mode()
    def generate_tags(
        text: str,
        auto_detect: bool,
        copyright_tags: str,
        max_new_tokens: int = 128,
        do_sample: bool = False,
        temperature: float = 0.1,
        top_k: int = 10,
        top_p: float = 0.1,
    ):
        tag_text = (
            "<|bos|>"
            "<|aspect_ratio:tall|><|rating:general|><|length:long|>"
            "<|reserved_2|><|reserved_3|><|reserved_4|>"
            "<|translate:exact|><|input_end|>"
            "<copyright>" + copyright_tags.strip()
        )
        if not auto_detect:
            tag_text += "</copyright><character></character><general>"
        inputs = processor(
            encoder_text=text, decoder_text=tag_text, return_tensors="pt"
        )

        start_time = time.time()
        outputs = model.generate(
            input_ids=inputs["input_ids"].to("cuda"),
            attention_mask=inputs["attention_mask"].to("cuda"),
            encoder_input_ids=inputs["encoder_input_ids"].to("cuda"),
            encoder_attention_mask=inputs["encoder_attention_mask"].to("cuda"),
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            eos_token_id=processor.decoder_tokenizer.eos_token_id,
            pad_token_id=processor.decoder_tokenizer.pad_token_id,
        )
        elapsed = time.time() - start_time

        deocded = ", ".join(
            [
                tag
                for tag in processor.batch_decode(outputs[0], skip_special_tokens=True)
                if tag.strip() != ""
            ]
        )
        return [deocded, f"Time elapsed: {elapsed:.2f} seconds"]

    with gr.Blocks() as ui:
        with gr.Row():
            with gr.Column():
                text = gr.Text(label="Text", lines=4)
                auto_detect = gr.Checkbox(
                    label="Auto detect copyright tags.", value=False
                )
                copyright_tags = gr.Textbox(
                    label="Custom tags",
                    placeholder="Enter custom tags here. e.g.) hatsune miku",
                )
                translate_btn = gr.Button(value="Translate")

                with gr.Accordion(label="Advanced", open=False):
                    max_new_tokens = gr.Number(label="Max new tokens", value=128)
                    do_sample = gr.Checkbox(label="Do sample", value=False)
                    temperature = gr.Slider(
                        label="Temperature",
                        minimum=0.1,
                        maximum=1.0,
                        value=0.1,
                        step=0.1,
                    )
                    top_k = gr.Number(
                        label="Top k",
                        value=10,
                    )
                    top_p = gr.Slider(
                        label="Top p",
                        minimum=0.1,
                        maximum=1.0,
                        value=0.1,
                        step=0.1,
                    )

            with gr.Column():
                output = gr.Textbox(label="Output", lines=4, interactive=False)
                time_elapsed = gr.Markdown(value="")

            gr.Examples(
                examples=[["Miku is looking at viewer.", True]],
                inputs=[text, auto_detect],
            )

        gr.on(
            triggers=[
                text.change,
                auto_detect.change,
                copyright_tags.change,
                translate_btn.click,
            ],
            fn=generate_tags,
            inputs=[
                text,
                auto_detect,
                copyright_tags,
                max_new_tokens,
                do_sample,
                temperature,
                top_k,
                top_p,
            ],
            outputs=[output, time_elapsed],
        )

    ui.launch()


if __name__ == "__main__":
    demo()