Spaces:
Sleeping
Sleeping
try: | |
import flash_attn | |
except: | |
import subprocess | |
print("Installing flash-attn...") | |
subprocess.run( | |
"uv install --system flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import flash_attn | |
print("flash-attn installed.") | |
import os | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
BitsAndBytesConfig, | |
) | |
from threading import Thread | |
import gradio as gr | |
from dotenv import load_dotenv | |
import spaces | |
load_dotenv() | |
HF_API_KEY = os.getenv("HF_API_KEY") | |
MODEL_NAME = "weblab-GENIAC/Tanuki-8B-dpo-v1.0" | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, quantization_config=quantization_config, device_map="auto", token=HF_API_KEY | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_API_KEY) | |
print("Compiling model...") | |
model = torch.compile(model) | |
print("Model compiled.") | |
def generate( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
top_k: int, | |
): | |
if not message or message.strip() == "": | |
return "", history | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
tokenized_input = tokenizer.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, return_tensors="pt" | |
).to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=tokenized_input, | |
streamer=streamer, | |
max_new_tokens=int(max_tokens), | |
do_sample=True, | |
temperature=float(temperature), | |
top_k=int(top_k), | |
top_p=float(top_p), | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# 返す値を初期化 | |
partial_message = "" | |
for new_token in streamer: | |
partial_message += new_token | |
new_history = history + [(message, partial_message)] | |
# 入力テキストをクリアする | |
yield "", new_history | |
def respond( | |
message: str, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
top_k: int, | |
): | |
for stream in generate( | |
message, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
): | |
yield *stream | |
def retry( | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
top_k: int, | |
): | |
# 最後のメッセージを削除 | |
last_conversation = history[-1] | |
user_message = last_conversation[0] | |
history = history[:-1] | |
for stream in generate( | |
user_message, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
): | |
yield *stream | |
def demo(): | |
with gr.Blocks() as ui: | |
gr.Markdown( | |
"""\ | |
# weblab-GENIAC/Tanuki-8B-dpo-v1.0 デモ | |
モデル: https://huggingface.co/weblab-GENIAC/Tanuki-8B-dpo-v1.0 | |
""" | |
) | |
chat_history = gr.Chatbot(value=[]) | |
with gr.Row(): | |
retry_btn = gr.Button(value="🔄 再生成", scale=1, size="sm") | |
clear_btn = gr.ClearButton( | |
components=[chat_history], value="🗑️ 削除", scale=1, size="sm" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
input_text = gr.Textbox( | |
value="", | |
placeholder="質問を入力してください...", | |
show_label=False, | |
scale=8, | |
) | |
start_btn = gr.Button( | |
value="送信", | |
variant="primary", | |
scale=1, | |
) | |
gr.Markdown( | |
value="※ 機密情報を入力しないでください。また、Tanuki は誤った情報を生成する可能性があります。" | |
) | |
with gr.Accordion(label="詳細設定", open=False): | |
system_prompt_text = gr.Textbox( | |
label="システムプロンプト", | |
value="以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。", | |
) | |
max_new_tokens_slider = gr.Slider( | |
minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" | |
) | |
temperature_slider = gr.Slider( | |
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
) | |
top_k_slider = gr.Slider( | |
minimum=1, maximum=2000, value=250, step=10, label="Top-k" | |
) | |
gr.Examples( | |
examples=[ | |
["たぬきってなんですか?"], | |
["情けは人の為ならずとはどういう意味ですか?"], | |
["まどマギで一番可愛いのは誰?"], | |
], | |
inputs=[input_text], | |
cache_examples=False, | |
) | |
start_btn.click( | |
respond, | |
inputs=[ | |
input_text, | |
chat_history, | |
system_prompt_text, | |
max_new_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
top_k_slider, | |
], | |
outputs=[input_text, chat_history], | |
) | |
input_text.submit( | |
respond, | |
inputs=[ | |
input_text, | |
chat_history, | |
system_prompt_text, | |
max_new_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
top_k_slider, | |
], | |
outputs=[input_text, chat_history], | |
) | |
retry_btn.click( | |
retry, | |
inputs=[ | |
chat_history, | |
system_prompt_text, | |
max_new_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
top_k_slider, | |
], | |
outputs=[input_text, chat_history], | |
) | |
ui.launch() | |
if __name__ == "__main__": | |
demo() | |