File size: 7,041 Bytes
41b1248
 
 
 
 
3f35dda
41b1248
1c916f2
41b1248
 
 
3f35dda
 
 
41b1248
fd490fb
 
cc9c601
2b7f2f4
 
 
 
 
 
cc9c601
 
d676716
fd490fb
d676716
fd490fb
cc9c601
 
fd490fb
cc9c601
bbf7f96
1c916f2
bbf7f96
798bcec
 
 
 
 
 
cc9c601
bbf7f96
cc9c601
bbf7f96
cc9c601
fd490fb
 
 
d676716
 
1c916f2
fd490fb
 
d676716
fd490fb
 
 
 
 
d676716
fd490fb
 
 
d676716
 
 
 
 
 
 
 
 
 
cc9c601
 
 
d676716
cc9c601
 
 
 
 
 
fd490fb
cc9c601
fd490fb
 
 
cc9c601
 
 
 
 
fd490fb
cc9c601
fd490fb
cc9c601
 
fd490fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c916f2
fd490fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c916f2
fd490fb
 
 
 
 
 
 
1c916f2
 
fd490fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c916f2
fd490fb
 
 
 
 
 
 
 
 
 
 
 
1c916f2
fd490fb
 
 
 
 
 
 
 
 
 
 
1c916f2
fd490fb
 
 
d676716
 
 
fd490fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
try:
    import flash_attn
except:
    import subprocess

    print("Installing flash-attn...")
    subprocess.run(
        "uv install --system flash-attn --no-build-isolation",
        env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
        shell=True,
    )
    import flash_attn

    print("flash-attn installed.")

import os

import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    BitsAndBytesConfig,
)
from threading import Thread

import gradio as gr
from dotenv import load_dotenv

import spaces


load_dotenv()

HF_API_KEY = os.getenv("HF_API_KEY")
MODEL_NAME = "weblab-GENIAC/Tanuki-8B-dpo-v1.0"

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME, quantization_config=quantization_config, device_map="auto", token=HF_API_KEY
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_API_KEY)

print("Compiling model...")
model = torch.compile(model)
print("Model compiled.")


@spaces.GPU(duration=30)
def generate(
    message: str,
    history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
):
    if not message or message.strip() == "":
        return "", history

    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    tokenized_input = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True, tokenize=True, return_tensors="pt"
    ).to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        input_ids=tokenized_input,
        streamer=streamer,
        max_new_tokens=int(max_tokens),
        do_sample=True,
        temperature=float(temperature),
        top_k=int(top_k),
        top_p=float(top_p),
        num_beams=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    # 返す値を初期化
    partial_message = ""

    for new_token in streamer:
        partial_message += new_token
        new_history = history + [(message, partial_message)]
        # 入力テキストをクリアする
        yield "", new_history


def respond(
    message: str,
    history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
):

    for stream in generate(
        message,
        history,
        system_message,
        max_tokens,
        temperature,
        top_p,
        top_k,
    ):
        yield *stream


def retry(
    history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
):
    # 最後のメッセージを削除
    last_conversation = history[-1]
    user_message = last_conversation[0]
    history = history[:-1]

    for stream in generate(
        user_message,
        history,
        system_message,
        max_tokens,
        temperature,
        top_p,
        top_k,
    ):
        yield *stream


def demo():
    with gr.Blocks() as ui:

        gr.Markdown(
            """\
# weblab-GENIAC/Tanuki-8B-dpo-v1.0 デモ
モデル: https://huggingface.co/weblab-GENIAC/Tanuki-8B-dpo-v1.0
"""
        )

        chat_history = gr.Chatbot(value=[])

        with gr.Row():
            retry_btn = gr.Button(value="🔄 再生成", scale=1, size="sm")
            clear_btn = gr.ClearButton(
                components=[chat_history], value="🗑️ 削除", scale=1, size="sm"
            )

        with gr.Group():
            with gr.Row():
                input_text = gr.Textbox(
                    value="",
                    placeholder="質問を入力してください...",
                    show_label=False,
                    scale=8,
                )
                start_btn = gr.Button(
                    value="送信",
                    variant="primary",
                    scale=1,
                )
            gr.Markdown(
                value="※ 機密情報を入力しないでください。また、Tanuki は誤った情報を生成する可能性があります。"
            )

        with gr.Accordion(label="詳細設定", open=False):
            system_prompt_text = gr.Textbox(
                label="システムプロンプト",
                value="以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。",
            )
            max_new_tokens_slider = gr.Slider(
                minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"
            )
            temperature_slider = gr.Slider(
                minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
            )
            top_p_slider = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p",
            )
            top_k_slider = gr.Slider(
                minimum=1, maximum=2000, value=250, step=10, label="Top-k"
            )

        gr.Examples(
            examples=[
                ["たぬきってなんですか?"],
                ["情けは人の為ならずとはどういう意味ですか?"],
                ["まどマギで一番可愛いのは誰?"],
            ],
            inputs=[input_text],
            cache_examples=False,
        )

        start_btn.click(
            respond,
            inputs=[
                input_text,
                chat_history,
                system_prompt_text,
                max_new_tokens_slider,
                temperature_slider,
                top_p_slider,
                top_k_slider,
            ],
            outputs=[input_text, chat_history],
        )
        input_text.submit(
            respond,
            inputs=[
                input_text,
                chat_history,
                system_prompt_text,
                max_new_tokens_slider,
                temperature_slider,
                top_p_slider,
                top_k_slider,
            ],
            outputs=[input_text, chat_history],
        )
        retry_btn.click(
            retry,
            inputs=[
                chat_history,
                system_prompt_text,
                max_new_tokens_slider,
                temperature_slider,
                top_p_slider,
                top_k_slider,
            ],
            outputs=[input_text, chat_history],
        )

    ui.launch()


if __name__ == "__main__":
    demo()