Spaces:
Running
Running
File size: 5,527 Bytes
812e69e ccff5c1 812e69e 85f6fcb 812e69e 1b24a66 812e69e ab613df 69a9a62 ab613df 2479e61 1947659 ffc79bb ef22e42 2aad192 56897e4 6fc30fa ef22e42 d60c82f 542414a 15a6d13 ffc79bb 542414a ffc79bb 542414a ffc79bb 812e69e ec1fc83 542414a 63d55b2 d3df5ac 63d55b2 d3df5ac 63d55b2 542414a d60c82f 85f6fcb c15a99e 85bbc23 c15a99e ec1fc83 ffc79bb ec1fc83 3fc723e ffc79bb 63d55b2 3fc723e 812e69e da1c584 25761d6 28ae721 ec1fc83 78004f2 812e69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import torch
from diffusers import UniPCMultistepScheduler, FlowMatchEulerDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
# from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from diffusers.models import UNetSpatioTemporalConditionModel
from transformers import T5EncoderModel, T5Tokenizer
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import gradio as gr
import spaces
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 1.0 #5.0 1.0 for image, 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
# Configure DDIMScheduler with a beta schedule
# pipe.scheduler = DDIMScheduler.from_config(
# pipe.scheduler.config,
# beta_start=0.00085, # Starting beta value
# beta_end=0.012, # Ending beta value
# beta_schedule="linear", # Linear beta schedule (other options: "scaled_linear", "squaredcos_cap_v2")
# num_train_timesteps=1000, # Number of timesteps
# flow_shift=flow_shift
# )
# Configure FlowMatchEulerDiscreteScheduler
# pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
# pipe.scheduler.config,
# flow_shift=flow_shift # Retain flow_shift for WanPipeline compatibility
# )
# --- LoRA State Management ---
# Define unique names for our adapters
DEFAULT_LORA_NAME = "causvid_lora"
CUSTOM_LORA_NAME = "custom_lora"
# Track which custom LoRA is currently loaded to avoid reloading
CURRENTLY_LOADED_CUSTOM_LORA = None
# Load the default base LoRA ONCE at startup
print("Loading base LoRA...")
CAUSVID_LORA_REPO = "Kijai/WanVideo_comfy"
CAUSVID_LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"
try:
causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name=DEFAULT_LORA_NAME)
print(f"✅ Default LoRA '{DEFAULT_LORA_NAME}' loaded successfully.")
except Exception as e:
print(f"⚠️ Default LoRA could not be loaded: {e}")
DEFAULT_LORA_NAME = None
print("Initialization complete. Gradio is starting...")
@spaces.GPU()
def generate(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
# if lora_id and lora_id.strip() != "":
# pipe.unload_lora_weights()
# pipe.load_lora_weights(lora_id.strip())
print("Loading base LoRA for this run...")
causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name=DEFAULT_LORA_NAME)
# If a custom LoRA is provided, load it as well.
if clean_lora_id:
print(f"Loading custom LoRA '{clean_lora_id}' for this run...")
pipe.load_lora_weights(clean_lora_id, adapter_name=CUSTOM_LORA_NAME)
# If a custom LoRA is present, activate both.
pipe.set_adapters([DEFAULT_LORA_NAME, CUSTOM_LORA_NAME], adapter_weights=[1.0, 1.0])
else:
# If no custom LoRA, just activate the base one.
print("Activating base LoRA only.")
pipe.set_adapters([DEFAULT_LORA_NAME], adapter_weights=[1.0])
pipe.to("cuda")
# apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2))
apply_cache_on_pipe(
pipe,
# residual_diff_threshold=0.2,
)
try:
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=1,
num_inference_steps=num_inference_steps,
guidance_scale=1.0, #5.0
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
finally:
# if lora_id and lora_id.strip() != "":
# pass
# pipe.unload_lora_weights()
# if clean_lora_id:
# print(f"Unloading '{CUSTOM_LORA_NAME}' from this run.")
# pipe.unload_lora_weights(CUSTOM_LORA_NAME)
# # Always disable all active LoRAs to reset the state.
# pipe.disable_lora()
print("Unloading all LoRAs to clean up.")
pipe.unload_lora_weights()
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
],
additional_inputs = [
gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=30),
gr.Textbox(label="LoRA ID"),
],
outputs=gr.Image(label="output"),
)
iface.launch() |