Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ import numpy as np
|
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
| 12 |
|
| 13 |
-
model_id = "Wan-AI/Wan2.1-T2V-
|
| 14 |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 15 |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
| 16 |
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
|
|
@@ -42,7 +42,7 @@ iface = gr.Interface(
|
|
| 42 |
gr.Textbox(label="Negative prompt", value = ""),
|
| 43 |
gr.Slider(label="Width", minimum=480, maximum=1280, step=8, value=1024),
|
| 44 |
gr.Slider(label="Height", minimum=480, maximum=1280, step=8, value=1024),
|
| 45 |
-
gr.Slider(minimum=1, maximum=
|
| 46 |
],
|
| 47 |
outputs=gr.Image(label="output"),
|
| 48 |
)
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
| 12 |
|
| 13 |
+
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 14 |
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 15 |
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
| 16 |
flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
|
|
|
|
| 42 |
gr.Textbox(label="Negative prompt", value = ""),
|
| 43 |
gr.Slider(label="Width", minimum=480, maximum=1280, step=8, value=1024),
|
| 44 |
gr.Slider(label="Height", minimum=480, maximum=1280, step=8, value=1024),
|
| 45 |
+
gr.Slider(minimum=1, maximum=60, step=1, label="Inference Steps", value=28)
|
| 46 |
],
|
| 47 |
outputs=gr.Image(label="output"),
|
| 48 |
)
|