Spaces:
Running
Running
File size: 3,996 Bytes
812e69e ccff5c1 812e69e 85f6fcb 812e69e 1b24a66 812e69e ab613df 69a9a62 ab613df 2479e61 1947659 ffc79bb ef22e42 2aad192 56897e4 6fc30fa ef22e42 d60c82f ffc79bb 812e69e ec1fc83 ffc79bb ec1fc83 d60c82f 85f6fcb c15a99e 85bbc23 c15a99e ec1fc83 ffc79bb ec1fc83 ffc79bb 812e69e da1c584 25761d6 28ae721 ec1fc83 78004f2 812e69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import torch
from diffusers import UniPCMultistepScheduler, FlowMatchEulerDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler
from diffusers import WanPipeline, AutoencoderKLWan # Use Wan-specific VAE
# from diffusers.hooks import apply_first_block_cache, FirstBlockCacheConfig
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
from diffusers.models import UNetSpatioTemporalConditionModel
from transformers import T5EncoderModel, T5Tokenizer
from huggingface_hub import hf_hub_download
from PIL import Image
import numpy as np
import gradio as gr
import spaces
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 1.0 #5.0 1.0 for image, 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
# Configure DDIMScheduler with a beta schedule
# pipe.scheduler = DDIMScheduler.from_config(
# pipe.scheduler.config,
# beta_start=0.00085, # Starting beta value
# beta_end=0.012, # Ending beta value
# beta_schedule="linear", # Linear beta schedule (other options: "scaled_linear", "squaredcos_cap_v2")
# num_train_timesteps=1000, # Number of timesteps
# flow_shift=flow_shift
# )
# Configure FlowMatchEulerDiscreteScheduler
# pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
# pipe.scheduler.config,
# flow_shift=flow_shift # Retain flow_shift for WanPipeline compatibility
# )
CAUSVID_LORA_REPO = "WanVideo_comfy"
CAUSVID_LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"
try:
causvid_path = hf_hub_download(repo_id=CAUSVID_LORA_REPO, filename=CAUSVID_LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
print("✅ CausVid LoRA loaded (strength: 1.0)")
except Exception as e:
print(f"⚠️ CausVid LoRA not loaded: {e}")
causvid_path = None
@spaces.GPU()
def generate(prompt, negative_prompt, width=1024, height=1024, num_inference_steps=30, lora_id=None, progress=gr.Progress(track_tqdm=True)):
if lora_id and lora_id.strip() != "":
# pipe.unload_lora_weights()
pipe.load_lora_weights(lora_id.strip())
pipe.to("cuda")
# apply_first_block_cache(pipe.transformer, FirstBlockCacheConfig(threshold=0.2))
apply_cache_on_pipe(
pipe,
# residual_diff_threshold=0.2,
)
try:
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_frames=1,
num_inference_steps=num_inference_steps,
guidance_scale=1.0, #5.0
)
image = output.frames[0][0]
image = (image * 255).astype(np.uint8)
return Image.fromarray(image)
finally:
if lora_id and lora_id.strip() != "":
pass
# pipe.unload_lora_weights()
iface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Input prompt"),
],
additional_inputs = [
gr.Textbox(label="Negative prompt", value = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"),
gr.Slider(label="Width", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(label="Height", minimum=480, maximum=1280, step=16, value=1024),
gr.Slider(minimum=1, maximum=80, step=1, label="Inference Steps", value=30),
gr.Textbox(label="LoRA ID"),
],
outputs=gr.Image(label="output"),
)
iface.launch() |