ginigen-sora / app.py
openfree's picture
Update app.py
00f24f4 verified
raw
history blame
32.1 kB
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import pipeline
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
# sacremoses μ„€μΉ˜ 확인
try:
import sacremoses
except ImportError:
print("Installing sacremoses...")
import subprocess
subprocess.check_call(["pip", "install", "sacremoses"])
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
from openai import OpenAI
import re
# Load system prompts
system_prompt_t2v = """당신은 λΉ„λ””μ˜€ 생성을 μœ„ν•œ ν”„λ‘¬ν”„νŠΈ μ „λ¬Έκ°€μž…λ‹ˆλ‹€.
주어진 ν”„λ‘¬ν”„νŠΈλ₯Ό λ‹€μŒ ꡬ쑰에 맞게 κ°œμ„ ν•΄μ£Όμ„Έμš”:
1. μ£Όμš” λ™μž‘μ„ λͺ…ν™•ν•œ ν•œ λ¬Έμž₯으둜 μ‹œμž‘
2. ꡬ체적인 λ™μž‘κ³Ό 제슀처λ₯Ό μ‹œκ°„ μˆœμ„œλŒ€λ‘œ μ„€λͺ…
3. 캐릭터/객체의 μ™Έλͺ¨λ₯Ό μƒμ„Ένžˆ λ¬˜μ‚¬
4. λ°°κ²½κ³Ό ν™˜κ²½ μ„ΈλΆ€ 사항을 ꡬ체적으둜 포함
5. 카메라 각도와 μ›€μ§μž„μ„ λͺ…μ‹œ
6. μ‘°λͺ…κ³Ό 색상을 μžμ„Ένžˆ μ„€λͺ…
7. λ³€ν™”λ‚˜ κ°‘μž‘μŠ€λŸ¬μš΄ 사건을 μžμ—°μŠ€λŸ½κ²Œ 포함
λͺ¨λ“  μ„€λͺ…은 ν•˜λ‚˜μ˜ μžμ—°μŠ€λŸ¬μš΄ λ¬Έλ‹¨μœΌλ‘œ μž‘μ„±ν•˜κ³ ,
촬영 감독이 촬영 λͺ©λ‘μ„ μ„€λͺ…ν•˜λŠ” κ²ƒμ²˜λŸΌ ꡬ체적이고 μ‹œκ°μ μœΌλ‘œ μž‘μ„±ν•˜μ„Έμš”.
200단어λ₯Ό λ„˜μ§€ μ•Šλ„λ‘ ν•˜λ˜, μ΅œλŒ€ν•œ μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜μ„Έμš”."""
system_prompt_i2v = """당신은 이미지 기반 λΉ„λ””μ˜€ 생성을 μœ„ν•œ ν”„λ‘¬ν”„νŠΈ μ „λ¬Έκ°€μž…λ‹ˆλ‹€.
주어진 ν”„λ‘¬ν”„νŠΈλ₯Ό λ‹€μŒ ꡬ쑰에 맞게 κ°œμ„ ν•΄μ£Όμ„Έμš”:
1. μ£Όμš” λ™μž‘μ„ λͺ…ν™•ν•œ ν•œ λ¬Έμž₯으둜 μ‹œμž‘
2. ꡬ체적인 λ™μž‘κ³Ό 제슀처λ₯Ό μ‹œκ°„ μˆœμ„œλŒ€λ‘œ μ„€λͺ…
3. 캐릭터/객체의 μ™Έλͺ¨λ₯Ό μƒμ„Ένžˆ λ¬˜μ‚¬
4. λ°°κ²½κ³Ό ν™˜κ²½ μ„ΈλΆ€ 사항을 ꡬ체적으둜 포함
5. 카메라 각도와 μ›€μ§μž„μ„ λͺ…μ‹œ
6. μ‘°λͺ…κ³Ό 색상을 μžμ„Ένžˆ μ„€λͺ…
7. λ³€ν™”λ‚˜ κ°‘μž‘μŠ€λŸ¬μš΄ 사건을 μžμ—°μŠ€λŸ½κ²Œ 포함
λͺ¨λ“  μ„€λͺ…은 ν•˜λ‚˜μ˜ μžμ—°μŠ€λŸ¬μš΄ λ¬Έλ‹¨μœΌλ‘œ μž‘μ„±ν•˜κ³ ,
촬영 감독이 촬영 λͺ©λ‘μ„ μ„€λͺ…ν•˜λŠ” κ²ƒμ²˜λŸΌ ꡬ체적이고 μ‹œκ°μ μœΌλ‘œ μž‘μ„±ν•˜μ„Έμš”.
200단어λ₯Ό λ„˜μ§€ μ•Šλ„λ‘ ν•˜λ˜, μ΅œλŒ€ν•œ μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜μ„Έμš”."""
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
# Initialize translation pipeline with device and clean_up settings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device,
clean_up_tokenization_spaces=True
)
# Korean text detection function
def contains_korean(text):
korean_pattern = re.compile('[γ„±-γ…Žγ…-γ…£κ°€-힣]')
return bool(korean_pattern.search(text))
def translate_korean_prompt(prompt):
"""
Translate Korean prompt to English if Korean text is detected
"""
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
print(f"Original Korean prompt: {prompt}")
print(f"Translated English prompt: {translated}")
return translated
return prompt
def enhance_prompt(prompt, type="t2v"):
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
)
enhanced_prompt = response.choices[0].message.content.strip()
print("\n=== ν”„λ‘¬ν”„νŠΈ 증강 κ²°κ³Ό ===")
print("Original Prompt:")
print(prompt)
print("\nEnhanced Prompt:")
print(enhanced_prompt)
print("========================\n")
return enhanced_prompt
except Exception as e:
print(f"Error during prompt enhancement: {e}")
return prompt
def update_prompt_t2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "t2v")
def update_prompt_i2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "i2v")
def update_prompt(prompt, enhance_toggle, type="t2v"):
if enhance_toggle:
return enhance_prompt(prompt, type)
return prompt
# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
snapshot_download(
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device=device, dtype=torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device=device, dtype=torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(device)
# State λ³€μˆ˜λ“€μ˜ μ΄ˆκΈ°ν™” μˆ˜μ •
txt2vid_current_height = gr.State(value=320)
txt2vid_current_width = gr.State(value=512)
txt2vid_current_num_frames = gr.State(value=257)
img2vid_current_height = gr.State(value=320)
img2vid_current_width = gr.State(value=512)
img2vid_current_num_frames = gr.State(value=257)
# Preset options for resolution and frame configuration
# Convert frames to seconds assuming 25 FPS
preset_options = [
{"label": "[16:9 HD] 1216x704, 1.6초", "width": 1216, "height": 704, "num_frames": 41},
{"label": "[16:9] 1088x704, 2.0초", "width": 1088, "height": 704, "num_frames": 49},
{"label": "[16:9] 1056x640, 2.3초", "width": 1056, "height": 640, "num_frames": 57},
{"label": "[16:9] 992x608, 2.6초", "width": 992, "height": 608, "num_frames": 65},
{"label": "[16:9] 896x608, 2.9초", "width": 896, "height": 608, "num_frames": 73},
{"label": "[16:9] 896x544, 3.2초", "width": 896, "height": 544, "num_frames": 81},
{"label": "[16:9] 832x544, 3.6초", "width": 832, "height": 544, "num_frames": 89},
{"label": "[16:9] 800x512, 3.9초", "width": 800, "height": 512, "num_frames": 97},
{"label": "[16:9] 768x512, 3.9초", "width": 768, "height": 512, "num_frames": 97},
{"label": "[16:9] 800x480, 4.2초", "width": 800, "height": 480, "num_frames": 105},
{"label": "[16:9] 736x480, 4.5초", "width": 736, "height": 480, "num_frames": 113},
{"label": "[3:2] 704x480, 4.8초", "width": 704, "height": 480, "num_frames": 121},
{"label": "[16:9] 704x448, 5.2초", "width": 704, "height": 448, "num_frames": 129},
{"label": "[16:9] 672x448, 5.5초", "width": 672, "height": 448, "num_frames": 137},
{"label": "[16:9] 640x416, 6.1초", "width": 640, "height": 416, "num_frames": 153},
{"label": "[16:9] 672x384, 6.4초", "width": 672, "height": 384, "num_frames": 161},
{"label": "[16:9] 640x384, 6.8초", "width": 640, "height": 384, "num_frames": 169},
{"label": "[16:9] 608x384, 7.1초", "width": 608, "height": 384, "num_frames": 177},
{"label": "[16:9] 576x384, 7.4초", "width": 576, "height": 384, "num_frames": 185},
{"label": "[16:9] 608x352, 7.7초", "width": 608, "height": 352, "num_frames": 193},
{"label": "[16:9] 576x352, 8.0초", "width": 576, "height": 352, "num_frames": 201},
{"label": "[16:9] 544x352, 8.4초", "width": 544, "height": 352, "num_frames": 209},
{"label": "[3:2] 512x352, 9.3초", "width": 512, "height": 352, "num_frames": 233},
{"label": "[16:9] 544x320, 9.6초", "width": 544, "height": 320, "num_frames": 241},
{"label": "[16:9] 512x320, 10.3초", "width": 512, "height": 320, "num_frames": 257},
]
def preset_changed(preset):
selected = next(item for item in preset_options if item["label"] == preset)
return [
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def generate_video_from_text(
prompt="",
enhance_prompt_toggle=False,
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
frame_rate=25,
seed=171198,
num_inference_steps=41,
guidance_scale=4,
height=320,
width=512,
num_frames=257,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"ν”„λ‘¬ν”„νŠΈλŠ” μ΅œμ†Œ 50자 이상이어야 ν•©λ‹ˆλ‹€. 더 μžμ„Έν•œ μ„€λͺ…을 μ œκ³΅ν•΄μ£Όμ„Έμš”.",
duration=5,
)
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"λΉ„λ””μ˜€ 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”. 였λ₯˜: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
print(images.shape)
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def generate_video_from_image(
image_path,
prompt="",
enhance_prompt_toggle=False,
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
frame_rate=25,
seed=171198,
num_inference_steps=41,
guidance_scale=4,
height=320,
width=512,
num_frames=257,
progress=gr.Progress(),
):
print("Height: ", height)
print("Width: ", width)
print("Num Frames: ", num_frames)
if len(prompt.strip()) < 50:
raise gr.Error(
"ν”„λ‘¬ν”„νŠΈλŠ” μ΅œμ†Œ 50자 이상이어야 ν•©λ‹ˆλ‹€. 더 μžμ„Έν•œ μ„€λͺ…을 μ œκ³΅ν•΄μ£Όμ„Έμš”.",
duration=5,
)
if not image_path:
raise gr.Error("μž…λ ₯ 이미지λ₯Ό μ œκ³΅ν•΄μ£Όμ„Έμš”.", duration=5)
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
media_items = (
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
except Exception as e:
raise gr.Error(
f"λΉ„λ””μ˜€ 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”. 였λ₯˜: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1000000,
step=1,
value=171198
)
inference_steps = gr.Slider(
label="4.2 Inference Steps",
minimum=1,
maximum=50,
step=1,
value=41,
visible=False
)
guidance_scale = gr.Slider(
label="4.3 Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0,
visible=False
)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=320,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=512,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=200,
step=1,
value=257,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
# μ‹œλ‚˜λ¦¬μ˜€ 뢄석 및 ν”„λ‘¬ν”„νŠΈ 생성을 μœ„ν•œ μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ
system_prompt_scenario = """당신은 μ˜μƒ μ‹œλ‚˜λ¦¬μ˜€λ₯Ό 5개의 μ„Ήμ…˜μœΌλ‘œ λ‚˜λˆ„κ³  각각에 λŒ€ν•œ λΉ„λ””μ˜€ 생성 ν”„λ‘¬ν”„νŠΈλ₯Ό μž‘μ„±ν•˜λŠ” μ „λ¬Έκ°€μž…λ‹ˆλ‹€.
주어진 μ‹œλ‚˜λ¦¬μ˜€λ₯Ό λ‹€μŒ 5개 μ„Ήμ…˜μœΌλ‘œ λ‚˜λˆ„μ–΄ 각각의 ν”„λ‘¬ν”„νŠΈλ₯Ό μƒμ„±ν•΄μ£Όμ„Έμš”:
1. λ°°κ²½ 및 ν•„μš”μ„±: 주제의 λ°°κ²½κ³Ό μ€‘μš”μ„±μ„ μ‹œκ°μ μœΌλ‘œ ν‘œν˜„
2. 문제 제기 및 ν₯λ―Έ 유발: 핡심 λ¬Έμ œλ‚˜ ν₯미둜운 포인트λ₯Ό λ“œλΌλ§ˆν‹±ν•˜κ²Œ ν‘œν˜„
3. ν•΄κ²°μ±… μ œμ‹œ: μ£Όμš” ν•΄κ²°λ°©μ•ˆμ΄λ‚˜ 접근법을 μ‹œκ°μ μœΌλ‘œ μ œμ‹œ
4. λ³Έλ‘ : 핡심 λ‚΄μš©μ„ μƒμ„Ένžˆ μ„€λͺ…ν•˜λŠ” μ‹œκ°μ  ν‘œν˜„
5. κ²°λ‘  및 κ°•μ‘°: μ£Όμš” 포인트λ₯Ό λ‹€μ‹œ ν•œλ²ˆ κ°•μ‘°ν•˜κ³  마무리
각 μ„Ήμ…˜μ˜ ν”„λ‘¬ν”„νŠΈλŠ” λ‹€μŒ μš”μ†Œλ₯Ό 포함해야 ν•©λ‹ˆλ‹€:
- μ£Όμš” μ‹œκ°μ  μš”μ†Œμ™€ λ™μž‘
- 카메라 μ›€μ§μž„κ³Ό μ•΅κΈ€
- μž₯λ©΄ μ „ν™˜κ³Ό 효과
- λΆ„μœ„κΈ°μ™€ 톀
- λ“±μž₯ μš”μ†Œλ“€μ˜ μ„ΈλΆ€ λ¬˜μ‚¬
각 μ„Ήμ…˜μ€ 10초 λΆ„λŸ‰μ˜ μ˜μƒμ„ 생성할 수 μžˆλ„λ‘ ꡬ체적이고 μ‹œκ°μ μΈ μ„€λͺ…을 포함해야 ν•©λ‹ˆλ‹€."""
def analyze_scenario(scenario):
"""μ‹œλ‚˜λ¦¬μ˜€λ₯Ό λΆ„μ„ν•˜μ—¬ 5개의 μ„Ήμ…˜μœΌλ‘œ λ‚˜λˆ„κ³  각각의 ν”„λ‘¬ν”„νŠΈλ₯Ό 생성"""
messages = [
{"role": "system", "content": system_prompt_scenario},
{"role": "user", "content": scenario},
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
)
prompts = response.choices[0].message.content.strip().split("\n\n")
# 5개의 μ„Ήμ…˜μœΌλ‘œ 정리
section_prompts = []
current_section = ""
for line in prompts:
if line.strip():
if any(section in line for section in ["1.", "2.", "3.", "4.", "5."]):
if current_section:
section_prompts.append(current_section)
current_section = line
else:
current_section += "\n" + line
if current_section:
section_prompts.append(current_section)
# μ •ν™•νžˆ 5개의 μ„Ήμ…˜μ΄ λ˜λ„λ‘ μ‘°μ •
while len(section_prompts) < 5:
section_prompts.append("μΆ”κ°€ μ„Ήμ…˜μ΄ ν•„μš”ν•©λ‹ˆλ‹€.")
return section_prompts[:5]
except Exception as e:
print(f"Error during scenario analysis: {e}")
return ["Error occurred during analysis"] * 5
def generate_section_video(prompt, preset, progress=gr.Progress()):
"""각 μ„Ήμ…˜μ˜ λΉ„λ””μ˜€ 생성"""
selected = next(item for item in preset_options if item["label"] == preset)
return generate_video_from_text(
prompt=prompt,
height=selected["height"],
width=selected["width"],
num_frames=selected["num_frames"],
progress=progress
)
# Gradio Interface Definition
with gr.Blocks(theme=gr.themes.Soft()) as iface:
with gr.Tabs():
# Text to Video Tab
with gr.TabItem("ν…μŠ€νŠΈλ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°"):
with gr.Row():
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="μƒμ„±ν•˜κ³  싢은 λΉ„λ””μ˜€λ₯Ό μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
value="κ·€μ—¬μš΄ 고양이",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="ν”„λ‘¬ν”„νŠΈ κ°œμ„ ",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3초",
label="Step 2: 해상도 프리셋 선택",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3: ν”„λ ˆμž„ 레이트",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 3: λΉ„λ””μ˜€ 생성",
variant="primary",
size="lg",
)
with gr.Column():
txt2vid_output = gr.Video(label="μƒμ„±λœ λΉ„λ””μ˜€")
# Image to Video Tab
with gr.TabItem("μ΄λ―Έμ§€λ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°"):
with gr.Row():
with gr.Column():
img2vid_image = gr.Image(
type="filepath",
label="Step 1: μž…λ ₯ 이미지 μ—…λ‘œλ“œ",
elem_id="image_upload",
)
img2vid_prompt = gr.Textbox(
label="Step 2: ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="이미지λ₯Ό μ–΄λ–»κ²Œ μ• λ‹ˆλ©”μ΄μ…˜ν™”ν• μ§€ μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
value="κ·€μ—¬μš΄ 고양이",
lines=5,
)
img2vid_enhance_toggle = Toggle(
label="ν”„λ‘¬ν”„νŠΈ 증강",
value=False,
interactive=True,
)
img2vid_negative_prompt = gr.Textbox(
label="Step 3: λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
img2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3초",
label="Step 3: 해상도 프리셋 선택",
)
img2vid_frame_rate = gr.Slider(
label="Step 4: ν”„λ ˆμž„ 레이트",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
img2vid_advanced = create_advanced_options()
img2vid_generate = gr.Button(
"Step 4: λΉ„λ””μ˜€ 생성",
variant="primary",
size="lg",
)
with gr.Column():
img2vid_output = gr.Video(label="μƒμ„±λœ λΉ„λ””μ˜€")
# Scenario to Video Tab (New)
with gr.TabItem("μ‹œλ‚˜λ¦¬μ˜€λ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°(숏폼)"):
with gr.Row():
with gr.Column(scale=1):
scenario_input = gr.Textbox(
label="μ˜μƒ 슀크립트 μž…λ ₯",
placeholder="전체 μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μž…λ ₯ν•˜μ„Έμš”...",
lines=10
)
scenario_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3초",
label="ν™”λ©΄ 크기 선택"
)
analyze_btn = gr.Button("μ‹œλ‚˜λ¦¬μ˜€ 뢄석 및 ν”„λ‘¬ν”„νŠΈ 생성", variant="primary")
with gr.Column(scale=2):
with gr.Row():
# μ„Ήμ…˜ 1
with gr.Column():
section1_prompt = gr.Textbox(
label="1. λ°°κ²½ 및 ν•„μš”μ„±",
lines=4
)
section1_generate = gr.Button("생성")
section1_video = gr.Video(label="μ„Ήμ…˜ 1 μ˜μƒ")
# μ„Ήμ…˜ 2
with gr.Column():
section2_prompt = gr.Textbox(
label="2. 문제 제기 및 ν₯λ―Έ 유발",
lines=4
)
section2_generate = gr.Button("생성")
section2_video = gr.Video(label="μ„Ήμ…˜ 2 μ˜μƒ")
with gr.Row():
# μ„Ήμ…˜ 3
with gr.Column():
section3_prompt = gr.Textbox(
label="3. ν•΄κ²°μ±… μ œμ‹œ",
lines=4
)
section3_generate = gr.Button("생성")
section3_video = gr.Video(label="μ„Ήμ…˜ 3 μ˜μƒ")
# μ„Ήμ…˜ 4
with gr.Column():
section4_prompt = gr.Textbox(
label="4. λ³Έλ‘ ",
lines=4
)
section4_generate = gr.Button("생성")
section4_video = gr.Video(label="μ„Ήμ…˜ 4 μ˜μƒ")
with gr.Row():
# μ„Ήμ…˜ 5
with gr.Column():
section5_prompt = gr.Textbox(
label="5. κ²°λ‘  및 κ°•μ‘°",
lines=4
)
section5_generate = gr.Button("생성")
section5_video = gr.Video(label="μ„Ήμ…˜ 5 μ˜μƒ")
# Event handlers
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=[
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
*txt2vid_advanced[3:]
]
)
txt2vid_enhance_toggle.change(
fn=update_prompt_t2v,
inputs=[txt2vid_prompt, txt2vid_enhance_toggle],
outputs=txt2vid_prompt
)
txt2vid_generate.click(
fn=generate_video_from_text,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
*txt2vid_advanced[:3],
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
],
outputs=txt2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
img2vid_preset.change(
fn=preset_changed,
inputs=[img2vid_preset],
outputs=[
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
*img2vid_advanced[3:]
]
)
img2vid_enhance_toggle.change(
fn=update_prompt_i2v,
inputs=[img2vid_prompt, img2vid_enhance_toggle],
outputs=img2vid_prompt
)
img2vid_generate.click(
fn=generate_video_from_image,
inputs=[
img2vid_image,
img2vid_prompt,
img2vid_enhance_toggle,
img2vid_negative_prompt,
img2vid_frame_rate,
*img2vid_advanced[:3],
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
],
outputs=img2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
# Scenario tab event handlers
analyze_btn.click(
fn=analyze_scenario,
inputs=[scenario_input],
outputs=[
section1_prompt, section2_prompt, section3_prompt,
section4_prompt, section5_prompt
]
)
section1_generate.click(
fn=generate_section_video,
inputs=[section1_prompt, scenario_preset],
outputs=section1_video
)
section2_generate.click(
fn=generate_section_video,
inputs=[section2_prompt, scenario_preset],
outputs=section2_video
)
section3_generate.click(
fn=generate_section_video,
inputs=[section3_prompt, scenario_preset],
outputs=section3_video
)
section4_generate.click(
fn=generate_section_video,
inputs=[section4_prompt, scenario_preset],
outputs=section4_video
)
section5_generate.click(
fn=generate_section_video,
inputs=[section5_prompt, scenario_preset],
outputs=section5_video
)
if __name__ == "__main__":
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
share=True, show_api=False
)