Spaces:
Running
Running
import gradio as gr | |
from gradio_toggle import Toggle | |
import torch | |
from huggingface_hub import snapshot_download | |
from transformers import pipeline | |
import warnings | |
warnings.filterwarnings('ignore', category=FutureWarning) | |
warnings.filterwarnings('ignore', category=UserWarning) | |
# sacremoses μ€μΉ νμΈ | |
try: | |
import sacremoses | |
except ImportError: | |
print("Installing sacremoses...") | |
import subprocess | |
subprocess.check_call(["pip", "install", "sacremoses"]) | |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
from xora.models.transformers.transformer3d import Transformer3DModel | |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
from xora.schedulers.rf import RectifiedFlowScheduler | |
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline | |
from transformers import T5EncoderModel, T5Tokenizer | |
from xora.utils.conditioning_method import ConditioningMethod | |
from pathlib import Path | |
import safetensors.torch | |
import json | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import tempfile | |
import os | |
import gc | |
from openai import OpenAI | |
import re | |
# Load system prompts | |
system_prompt_t2v = """λΉμ μ λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ λλ€. | |
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ: | |
1. μ£Όμ λμμ λͺ νν ν λ¬Έμ₯μΌλ‘ μμ | |
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ | |
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬ | |
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨ | |
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ μ | |
6. μ‘°λͺ κ³Ό μμμ μμΈν μ€λͺ | |
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨ | |
λͺ¨λ μ€λͺ μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ , | |
촬μ κ°λ μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ. | |
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ.""" | |
system_prompt_i2v = """λΉμ μ μ΄λ―Έμ§ κΈ°λ° λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ λλ€. | |
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ: | |
1. μ£Όμ λμμ λͺ νν ν λ¬Έμ₯μΌλ‘ μμ | |
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ | |
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬ | |
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨ | |
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ μ | |
6. μ‘°λͺ κ³Ό μμμ μμΈν μ€λͺ | |
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨ | |
λͺ¨λ μ€λͺ μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ , | |
촬μ κ°λ μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ. | |
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ.""" | |
# Load Hugging Face token if needed | |
hf_token = os.getenv("HF_TOKEN") | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
client = OpenAI(api_key=openai_api_key) | |
# Initialize translation pipeline with device and clean_up settings | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
translator = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=device, | |
clean_up_tokenization_spaces=True | |
) | |
# Korean text detection function | |
def contains_korean(text): | |
korean_pattern = re.compile('[γ±-γ γ -γ £κ°-ν£]') | |
return bool(korean_pattern.search(text)) | |
def translate_korean_prompt(prompt): | |
""" | |
Translate Korean prompt to English if Korean text is detected | |
""" | |
if contains_korean(prompt): | |
translated = translator(prompt)[0]['translation_text'] | |
print(f"Original Korean prompt: {prompt}") | |
print(f"Translated English prompt: {translated}") | |
return translated | |
return prompt | |
def enhance_prompt(prompt, type="t2v"): | |
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt}, | |
] | |
try: | |
response = client.chat.completions.create( | |
model="gpt-4-1106-preview", | |
messages=messages, | |
max_tokens=2000, | |
) | |
enhanced_prompt = response.choices[0].message.content.strip() | |
print("\n=== ν둬ννΈ μ¦κ° κ²°κ³Ό ===") | |
print("Original Prompt:") | |
print(prompt) | |
print("\nEnhanced Prompt:") | |
print(enhanced_prompt) | |
print("========================\n") | |
return enhanced_prompt | |
except Exception as e: | |
print(f"Error during prompt enhancement: {e}") | |
return prompt | |
def update_prompt_t2v(prompt, enhance_toggle): | |
return update_prompt(prompt, enhance_toggle, "t2v") | |
def update_prompt_i2v(prompt, enhance_toggle): | |
return update_prompt(prompt, enhance_toggle, "i2v") | |
def update_prompt(prompt, enhance_toggle, type="t2v"): | |
if enhance_toggle: | |
return enhance_prompt(prompt, type) | |
return prompt | |
# Set model download directory within Hugging Face Spaces | |
model_path = "asset" | |
if not os.path.exists(model_path): | |
snapshot_download( | |
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token | |
) | |
# Global variables to load components | |
vae_dir = Path(model_path) / "vae" | |
unet_dir = Path(model_path) / "unet" | |
scheduler_dir = Path(model_path) / "scheduler" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_vae(vae_dir): | |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors" | |
vae_config_path = vae_dir / "config.json" | |
with open(vae_config_path, "r") as f: | |
vae_config = json.load(f) | |
vae = CausalVideoAutoencoder.from_config(vae_config) | |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) | |
vae.load_state_dict(vae_state_dict) | |
return vae.to(device=device, dtype=torch.bfloat16) | |
def load_unet(unet_dir): | |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors" | |
unet_config_path = unet_dir / "config.json" | |
transformer_config = Transformer3DModel.load_config(unet_config_path) | |
transformer = Transformer3DModel.from_config(transformer_config) | |
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) | |
transformer.load_state_dict(unet_state_dict, strict=True) | |
return transformer.to(device=device, dtype=torch.bfloat16) | |
def load_scheduler(scheduler_dir): | |
scheduler_config_path = scheduler_dir / "scheduler_config.json" | |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
return RectifiedFlowScheduler.from_config(scheduler_config) | |
# Helper function for image processing | |
def center_crop_and_resize(frame, target_height, target_width): | |
h, w, _ = frame.shape | |
aspect_ratio_target = target_width / target_height | |
aspect_ratio_frame = w / h | |
if aspect_ratio_frame > aspect_ratio_target: | |
new_width = int(h * aspect_ratio_target) | |
x_start = (w - new_width) // 2 | |
frame_cropped = frame[:, x_start : x_start + new_width] | |
else: | |
new_height = int(w / aspect_ratio_target) | |
y_start = (h - new_height) // 2 | |
frame_cropped = frame[y_start : y_start + new_height, :] | |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) | |
return frame_resized | |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): | |
image = Image.open(image_path).convert("RGB") | |
image_np = np.array(image) | |
frame_resized = center_crop_and_resize(image_np, target_height, target_width) | |
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() | |
frame_tensor = (frame_tensor / 127.5) - 1.0 | |
return frame_tensor.unsqueeze(0).unsqueeze(2) | |
# Load models | |
vae = load_vae(vae_dir) | |
unet = load_unet(unet_dir) | |
scheduler = load_scheduler(scheduler_dir) | |
patchifier = SymmetricPatchifier(patch_size=1) | |
text_encoder = T5EncoderModel.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" | |
).to(device) | |
tokenizer = T5Tokenizer.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer" | |
) | |
pipeline = XoraVideoPipeline( | |
transformer=unet, | |
patchifier=patchifier, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
vae=vae, | |
).to(device) | |
# State λ³μλ€μ μ΄κΈ°ν μμ | |
txt2vid_current_height = gr.State(value=320) | |
txt2vid_current_width = gr.State(value=512) | |
txt2vid_current_num_frames = gr.State(value=257) | |
img2vid_current_height = gr.State(value=320) | |
img2vid_current_width = gr.State(value=512) | |
img2vid_current_num_frames = gr.State(value=257) | |
# Preset options for resolution and frame configuration | |
# Convert frames to seconds assuming 25 FPS | |
preset_options = [ | |
{"label": "[16:9 HD] 1216x704, 1.6μ΄", "width": 1216, "height": 704, "num_frames": 41}, | |
{"label": "[16:9] 1088x704, 2.0μ΄", "width": 1088, "height": 704, "num_frames": 49}, | |
{"label": "[16:9] 1056x640, 2.3μ΄", "width": 1056, "height": 640, "num_frames": 57}, | |
{"label": "[16:9] 992x608, 2.6μ΄", "width": 992, "height": 608, "num_frames": 65}, | |
{"label": "[16:9] 896x608, 2.9μ΄", "width": 896, "height": 608, "num_frames": 73}, | |
{"label": "[16:9] 896x544, 3.2μ΄", "width": 896, "height": 544, "num_frames": 81}, | |
{"label": "[16:9] 832x544, 3.6μ΄", "width": 832, "height": 544, "num_frames": 89}, | |
{"label": "[16:9] 800x512, 3.9μ΄", "width": 800, "height": 512, "num_frames": 97}, | |
{"label": "[16:9] 768x512, 3.9μ΄", "width": 768, "height": 512, "num_frames": 97}, | |
{"label": "[16:9] 800x480, 4.2μ΄", "width": 800, "height": 480, "num_frames": 105}, | |
{"label": "[16:9] 736x480, 4.5μ΄", "width": 736, "height": 480, "num_frames": 113}, | |
{"label": "[3:2] 704x480, 4.8μ΄", "width": 704, "height": 480, "num_frames": 121}, | |
{"label": "[16:9] 704x448, 5.2μ΄", "width": 704, "height": 448, "num_frames": 129}, | |
{"label": "[16:9] 672x448, 5.5μ΄", "width": 672, "height": 448, "num_frames": 137}, | |
{"label": "[16:9] 640x416, 6.1μ΄", "width": 640, "height": 416, "num_frames": 153}, | |
{"label": "[16:9] 672x384, 6.4μ΄", "width": 672, "height": 384, "num_frames": 161}, | |
{"label": "[16:9] 640x384, 6.8μ΄", "width": 640, "height": 384, "num_frames": 169}, | |
{"label": "[16:9] 608x384, 7.1μ΄", "width": 608, "height": 384, "num_frames": 177}, | |
{"label": "[16:9] 576x384, 7.4μ΄", "width": 576, "height": 384, "num_frames": 185}, | |
{"label": "[16:9] 608x352, 7.7μ΄", "width": 608, "height": 352, "num_frames": 193}, | |
{"label": "[16:9] 576x352, 8.0μ΄", "width": 576, "height": 352, "num_frames": 201}, | |
{"label": "[16:9] 544x352, 8.4μ΄", "width": 544, "height": 352, "num_frames": 209}, | |
{"label": "[3:2] 512x352, 9.3μ΄", "width": 512, "height": 352, "num_frames": 233}, | |
{"label": "[16:9] 544x320, 9.6μ΄", "width": 544, "height": 320, "num_frames": 241}, | |
{"label": "[16:9] 512x320, 10.3μ΄", "width": 512, "height": 320, "num_frames": 257}, | |
] | |
def preset_changed(preset): | |
selected = next(item for item in preset_options if item["label"] == preset) | |
return [ | |
selected["height"], | |
selected["width"], | |
selected["num_frames"], | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
] | |
def generate_video_from_text( | |
prompt="", | |
enhance_prompt_toggle=False, | |
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive", | |
frame_rate=25, | |
seed=171198, | |
num_inference_steps=41, | |
guidance_scale=4, | |
height=320, | |
width=512, | |
num_frames=257, | |
progress=gr.Progress(), | |
): | |
if len(prompt.strip()) < 50: | |
raise gr.Error( | |
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ μ μ 곡ν΄μ£ΌμΈμ.", | |
duration=5, | |
) | |
# Translate Korean prompts to English | |
prompt = translate_korean_prompt(prompt) | |
negative_prompt = translate_korean_prompt(negative_prompt) | |
sample = { | |
"prompt": prompt, | |
"prompt_attention_mask": None, | |
"negative_prompt": negative_prompt, | |
"negative_prompt_attention_mask": None, | |
"media_items": None, | |
} | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
def gradio_progress_callback(self, step, timestep, kwargs): | |
progress((step + 1) / num_inference_steps) | |
try: | |
with torch.no_grad(): | |
images = pipeline( | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
output_type="pt", | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
frame_rate=frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=ConditioningMethod.UNCONDITIONAL, | |
mixed_precision=True, | |
callback_on_step_end=gradio_progress_callback, | |
).images | |
except Exception as e: | |
raise gr.Error( | |
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}", | |
duration=5, | |
) | |
finally: | |
torch.cuda.empty_cache() | |
gc.collect() | |
output_path = tempfile.mktemp(suffix=".mp4") | |
print(images.shape) | |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = (video_np * 255).astype(np.uint8) | |
height, width = video_np.shape[1:3] | |
out = cv2.VideoWriter( | |
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height) | |
) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
del images | |
del video_np | |
torch.cuda.empty_cache() | |
return output_path | |
def generate_video_from_image( | |
image_path, | |
prompt="", | |
enhance_prompt_toggle=False, | |
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive", | |
frame_rate=25, | |
seed=171198, | |
num_inference_steps=41, | |
guidance_scale=4, | |
height=320, | |
width=512, | |
num_frames=257, | |
progress=gr.Progress(), | |
): | |
print("Height: ", height) | |
print("Width: ", width) | |
print("Num Frames: ", num_frames) | |
if len(prompt.strip()) < 50: | |
raise gr.Error( | |
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ μ μ 곡ν΄μ£ΌμΈμ.", | |
duration=5, | |
) | |
if not image_path: | |
raise gr.Error("μ λ ₯ μ΄λ―Έμ§λ₯Ό μ 곡ν΄μ£ΌμΈμ.", duration=5) | |
# Translate Korean prompts to English | |
prompt = translate_korean_prompt(prompt) | |
negative_prompt = translate_korean_prompt(negative_prompt) | |
media_items = ( | |
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach() | |
) | |
sample = { | |
"prompt": prompt, | |
"prompt_attention_mask": None, | |
"negative_prompt": negative_prompt, | |
"negative_prompt_attention_mask": None, | |
"media_items": media_items, | |
} | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
def gradio_progress_callback(self, step, timestep, kwargs): | |
progress((step + 1) / num_inference_steps) | |
try: | |
with torch.no_grad(): | |
images = pipeline( | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
output_type="pt", | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
frame_rate=frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=ConditioningMethod.FIRST_FRAME, | |
mixed_precision=True, | |
callback_on_step_end=gradio_progress_callback, | |
).images | |
output_path = tempfile.mktemp(suffix=".mp4") | |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = (video_np * 255).astype(np.uint8) | |
height, width = video_np.shape[1:3] | |
out = cv2.VideoWriter( | |
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height) | |
) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
except Exception as e: | |
raise gr.Error( | |
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}", | |
duration=5, | |
) | |
finally: | |
torch.cuda.empty_cache() | |
gc.collect() | |
return output_path | |
def create_advanced_options(): | |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=1000000, | |
step=1, | |
value=171198 | |
) | |
inference_steps = gr.Slider( | |
label="4.2 Inference Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=41, | |
visible=False | |
) | |
guidance_scale = gr.Slider( | |
label="4.3 Guidance Scale", | |
minimum=1.0, | |
maximum=5.0, | |
step=0.1, | |
value=4.0, | |
visible=False | |
) | |
height_slider = gr.Slider( | |
label="4.4 Height", | |
minimum=256, | |
maximum=1024, | |
step=64, | |
value=320, | |
visible=False, | |
) | |
width_slider = gr.Slider( | |
label="4.5 Width", | |
minimum=256, | |
maximum=1024, | |
step=64, | |
value=512, | |
visible=False, | |
) | |
num_frames_slider = gr.Slider( | |
label="4.5 Number of Frames", | |
minimum=1, | |
maximum=200, | |
step=1, | |
value=257, | |
visible=False, | |
) | |
return [ | |
seed, | |
inference_steps, | |
guidance_scale, | |
height_slider, | |
width_slider, | |
num_frames_slider, | |
] | |
# μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±μ μν μμ€ν ν둬ννΈ | |
system_prompt_scenario = """λΉμ μ μμ μλ리μ€λ₯Ό 5κ°μ μΉμ μΌλ‘ λλκ³ κ°κ°μ λν λΉλμ€ μμ± ν둬ννΈλ₯Ό μμ±νλ μ λ¬Έκ°μ λλ€. | |
μ£Όμ΄μ§ μλ리μ€λ₯Ό λ€μ 5κ° μΉμ μΌλ‘ λλμ΄ κ°κ°μ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ: | |
1. λ°°κ²½ λ° νμμ±: μ£Όμ μ λ°°κ²½κ³Ό μ€μμ±μ μκ°μ μΌλ‘ νν | |
2. λ¬Έμ μ κΈ° λ° ν₯λ―Έ μ λ°: ν΅μ¬ λ¬Έμ λ ν₯λ―Έλ‘μ΄ ν¬μΈνΈλ₯Ό λλΌλ§ν±νκ² νν | |
3. ν΄κ²°μ± μ μ: μ£Όμ ν΄κ²°λ°©μμ΄λ μ κ·Όλ²μ μκ°μ μΌλ‘ μ μ | |
4. λ³Έλ‘ : ν΅μ¬ λ΄μ©μ μμΈν μ€λͺ νλ μκ°μ νν | |
5. κ²°λ‘ λ° κ°μ‘°: μ£Όμ ν¬μΈνΈλ₯Ό λ€μ νλ² κ°μ‘°νκ³ λ§λ¬΄λ¦¬ | |
κ° μΉμ μ ν둬ννΈλ λ€μ μμλ₯Ό ν¬ν¨ν΄μΌ ν©λλ€: | |
- μ£Όμ μκ°μ μμμ λμ | |
- μΉ΄λ©λΌ μμ§μκ³Ό μ΅κΈ | |
- μ₯λ©΄ μ νκ³Ό ν¨κ³Ό | |
- λΆμκΈ°μ ν€ | |
- λ±μ₯ μμλ€μ μΈλΆ λ¬μ¬ | |
κ° μΉμ μ 10μ΄ λΆλμ μμμ μμ±ν μ μλλ‘ κ΅¬μ²΄μ μ΄κ³ μκ°μ μΈ μ€λͺ μ ν¬ν¨ν΄μΌ ν©λλ€.""" | |
def analyze_scenario(scenario): | |
"""μλ리μ€λ₯Ό λΆμνμ¬ 5κ°μ μΉμ μΌλ‘ λλκ³ κ°κ°μ ν둬ννΈλ₯Ό μμ±""" | |
messages = [ | |
{"role": "system", "content": system_prompt_scenario}, | |
{"role": "user", "content": scenario}, | |
] | |
try: | |
response = client.chat.completions.create( | |
model="gpt-4-1106-preview", | |
messages=messages, | |
max_tokens=2000, | |
) | |
prompts = response.choices[0].message.content.strip().split("\n\n") | |
# 5κ°μ μΉμ μΌλ‘ μ 리 | |
section_prompts = [] | |
current_section = "" | |
for line in prompts: | |
if line.strip(): | |
if any(section in line for section in ["1.", "2.", "3.", "4.", "5."]): | |
if current_section: | |
section_prompts.append(current_section) | |
current_section = line | |
else: | |
current_section += "\n" + line | |
if current_section: | |
section_prompts.append(current_section) | |
# μ νν 5κ°μ μΉμ μ΄ λλλ‘ μ‘°μ | |
while len(section_prompts) < 5: | |
section_prompts.append("μΆκ° μΉμ μ΄ νμν©λλ€.") | |
return section_prompts[:5] | |
except Exception as e: | |
print(f"Error during scenario analysis: {e}") | |
return ["Error occurred during analysis"] * 5 | |
def generate_section_video(prompt, preset, progress=gr.Progress()): | |
"""κ° μΉμ μ λΉλμ€ μμ±""" | |
selected = next(item for item in preset_options if item["label"] == preset) | |
return generate_video_from_text( | |
prompt=prompt, | |
height=selected["height"], | |
width=selected["width"], | |
num_frames=selected["num_frames"], | |
progress=progress | |
) | |
# Gradio Interface Definition | |
with gr.Blocks(theme=gr.themes.Soft()) as iface: | |
with gr.Tabs(): | |
# Text to Video Tab | |
with gr.TabItem("ν μ€νΈλ‘ λΉλμ€ λ§λ€κΈ°"): | |
with gr.Row(): | |
with gr.Column(): | |
txt2vid_prompt = gr.Textbox( | |
label="Step 1: ν둬ννΈ μ λ ₯", | |
placeholder="μμ±νκ³ μΆμ λΉλμ€λ₯Ό μ€λͺ νμΈμ (μ΅μ 50μ)...", | |
value="κ·μ¬μ΄ κ³ μμ΄", | |
lines=5, | |
) | |
txt2vid_enhance_toggle = Toggle( | |
label="ν둬ννΈ κ°μ ", | |
value=False, | |
interactive=True, | |
) | |
txt2vid_negative_prompt = gr.Textbox( | |
label="Step 2: λ€κ±°ν°λΈ ν둬ννΈ μ λ ₯", | |
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ νμΈμ...", | |
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive", | |
lines=2, | |
visible=False | |
) | |
txt2vid_preset = gr.Dropdown( | |
choices=[p["label"] for p in preset_options], | |
value="[16:9] 512x320, 10.3μ΄", | |
label="Step 2: ν΄μλ ν리μ μ ν", | |
) | |
txt2vid_frame_rate = gr.Slider( | |
label="Step 3: νλ μ λ μ΄νΈ", | |
minimum=21, | |
maximum=30, | |
step=1, | |
value=25, | |
visible=False | |
) | |
txt2vid_advanced = create_advanced_options() | |
txt2vid_generate = gr.Button( | |
"Step 3: λΉλμ€ μμ±", | |
variant="primary", | |
size="lg", | |
) | |
with gr.Column(): | |
txt2vid_output = gr.Video(label="μμ±λ λΉλμ€") | |
# Image to Video Tab | |
with gr.TabItem("μ΄λ―Έμ§λ‘ λΉλμ€ λ§λ€κΈ°"): | |
with gr.Row(): | |
with gr.Column(): | |
img2vid_image = gr.Image( | |
type="filepath", | |
label="Step 1: μ λ ₯ μ΄λ―Έμ§ μ λ‘λ", | |
elem_id="image_upload", | |
) | |
img2vid_prompt = gr.Textbox( | |
label="Step 2: ν둬ννΈ μ λ ₯", | |
placeholder="μ΄λ―Έμ§λ₯Ό μ΄λ»κ² μ λλ©μ΄μ νν μ§ μ€λͺ νμΈμ (μ΅μ 50μ)...", | |
value="κ·μ¬μ΄ κ³ μμ΄", | |
lines=5, | |
) | |
img2vid_enhance_toggle = Toggle( | |
label="ν둬ννΈ μ¦κ°", | |
value=False, | |
interactive=True, | |
) | |
img2vid_negative_prompt = gr.Textbox( | |
label="Step 3: λ€κ±°ν°λΈ ν둬ννΈ μ λ ₯", | |
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ νμΈμ...", | |
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive", | |
lines=2, | |
visible=False | |
) | |
img2vid_preset = gr.Dropdown( | |
choices=[p["label"] for p in preset_options], | |
value="[16:9] 512x320, 10.3μ΄", | |
label="Step 3: ν΄μλ ν리μ μ ν", | |
) | |
img2vid_frame_rate = gr.Slider( | |
label="Step 4: νλ μ λ μ΄νΈ", | |
minimum=21, | |
maximum=30, | |
step=1, | |
value=25, | |
visible=False | |
) | |
img2vid_advanced = create_advanced_options() | |
img2vid_generate = gr.Button( | |
"Step 4: λΉλμ€ μμ±", | |
variant="primary", | |
size="lg", | |
) | |
with gr.Column(): | |
img2vid_output = gr.Video(label="μμ±λ λΉλμ€") | |
# Scenario to Video Tab (New) | |
with gr.TabItem("μλ리μ€λ‘ λΉλμ€ λ§λ€κΈ°(μνΌ)"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
scenario_input = gr.Textbox( | |
label="μμ μ€ν¬λ¦½νΈ μ λ ₯", | |
placeholder="μ 체 μλ리μ€λ₯Ό μ λ ₯νμΈμ...", | |
lines=10 | |
) | |
scenario_preset = gr.Dropdown( | |
choices=[p["label"] for p in preset_options], | |
value="[16:9] 512x320, 10.3μ΄", | |
label="νλ©΄ ν¬κΈ° μ ν" | |
) | |
analyze_btn = gr.Button("μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±", variant="primary") | |
with gr.Column(scale=2): | |
with gr.Row(): | |
# μΉμ 1 | |
with gr.Column(): | |
section1_prompt = gr.Textbox( | |
label="1. λ°°κ²½ λ° νμμ±", | |
lines=4 | |
) | |
section1_generate = gr.Button("μμ±") | |
section1_video = gr.Video(label="μΉμ 1 μμ") | |
# μΉμ 2 | |
with gr.Column(): | |
section2_prompt = gr.Textbox( | |
label="2. λ¬Έμ μ κΈ° λ° ν₯λ―Έ μ λ°", | |
lines=4 | |
) | |
section2_generate = gr.Button("μμ±") | |
section2_video = gr.Video(label="μΉμ 2 μμ") | |
with gr.Row(): | |
# μΉμ 3 | |
with gr.Column(): | |
section3_prompt = gr.Textbox( | |
label="3. ν΄κ²°μ± μ μ", | |
lines=4 | |
) | |
section3_generate = gr.Button("μμ±") | |
section3_video = gr.Video(label="μΉμ 3 μμ") | |
# μΉμ 4 | |
with gr.Column(): | |
section4_prompt = gr.Textbox( | |
label="4. λ³Έλ‘ ", | |
lines=4 | |
) | |
section4_generate = gr.Button("μμ±") | |
section4_video = gr.Video(label="μΉμ 4 μμ") | |
with gr.Row(): | |
# μΉμ 5 | |
with gr.Column(): | |
section5_prompt = gr.Textbox( | |
label="5. κ²°λ‘ λ° κ°μ‘°", | |
lines=4 | |
) | |
section5_generate = gr.Button("μμ±") | |
section5_video = gr.Video(label="μΉμ 5 μμ") | |
# Event handlers | |
txt2vid_preset.change( | |
fn=preset_changed, | |
inputs=[txt2vid_preset], | |
outputs=[ | |
txt2vid_current_height, | |
txt2vid_current_width, | |
txt2vid_current_num_frames, | |
*txt2vid_advanced[3:] | |
] | |
) | |
txt2vid_enhance_toggle.change( | |
fn=update_prompt_t2v, | |
inputs=[txt2vid_prompt, txt2vid_enhance_toggle], | |
outputs=txt2vid_prompt | |
) | |
txt2vid_generate.click( | |
fn=generate_video_from_text, | |
inputs=[ | |
txt2vid_prompt, | |
txt2vid_enhance_toggle, | |
txt2vid_negative_prompt, | |
txt2vid_frame_rate, | |
*txt2vid_advanced[:3], | |
txt2vid_current_height, | |
txt2vid_current_width, | |
txt2vid_current_num_frames, | |
], | |
outputs=txt2vid_output, | |
concurrency_limit=1, | |
concurrency_id="generate_video", | |
queue=True, | |
) | |
img2vid_preset.change( | |
fn=preset_changed, | |
inputs=[img2vid_preset], | |
outputs=[ | |
img2vid_current_height, | |
img2vid_current_width, | |
img2vid_current_num_frames, | |
*img2vid_advanced[3:] | |
] | |
) | |
img2vid_enhance_toggle.change( | |
fn=update_prompt_i2v, | |
inputs=[img2vid_prompt, img2vid_enhance_toggle], | |
outputs=img2vid_prompt | |
) | |
img2vid_generate.click( | |
fn=generate_video_from_image, | |
inputs=[ | |
img2vid_image, | |
img2vid_prompt, | |
img2vid_enhance_toggle, | |
img2vid_negative_prompt, | |
img2vid_frame_rate, | |
*img2vid_advanced[:3], | |
img2vid_current_height, | |
img2vid_current_width, | |
img2vid_current_num_frames, | |
], | |
outputs=img2vid_output, | |
concurrency_limit=1, | |
concurrency_id="generate_video", | |
queue=True, | |
) | |
# Scenario tab event handlers | |
analyze_btn.click( | |
fn=analyze_scenario, | |
inputs=[scenario_input], | |
outputs=[ | |
section1_prompt, section2_prompt, section3_prompt, | |
section4_prompt, section5_prompt | |
] | |
) | |
section1_generate.click( | |
fn=generate_section_video, | |
inputs=[section1_prompt, scenario_preset], | |
outputs=section1_video | |
) | |
section2_generate.click( | |
fn=generate_section_video, | |
inputs=[section2_prompt, scenario_preset], | |
outputs=section2_video | |
) | |
section3_generate.click( | |
fn=generate_section_video, | |
inputs=[section3_prompt, scenario_preset], | |
outputs=section3_video | |
) | |
section4_generate.click( | |
fn=generate_section_video, | |
inputs=[section4_prompt, scenario_preset], | |
outputs=section4_video | |
) | |
section5_generate.click( | |
fn=generate_section_video, | |
inputs=[section5_prompt, scenario_preset], | |
outputs=section5_video | |
) | |
if __name__ == "__main__": | |
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch( | |
share=True, show_api=False | |
) |