Spaces:
Running
Running
File size: 48,243 Bytes
44f4dde 5beda4f 44f4dde 75c3863 44f4dde 75c3863 44f4dde 75c3863 44f4dde 75c3863 44f4dde 75c3863 44f4dde 75c3863 44f4dde 12996e6 44f4dde 75c3863 44f4dde 5beda4f 75c3863 5beda4f 75c3863 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 5beda4f 44f4dde 12996e6 44f4dde 12996e6 75c3863 12996e6 44f4dde 12996e6 44f4dde 75c3863 44f4dde 75c3863 44f4dde 75c3863 44f4dde 75c3863 5beda4f f2f0666 5beda4f 75c3863 5beda4f 75c3863 5beda4f f2f0666 5beda4f f2f0666 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 5beda4f 75c3863 f2f0666 75c3863 f2f0666 5beda4f f2f0666 5beda4f 75c3863 f2f0666 5beda4f f2f0666 5beda4f f2f0666 75c3863 5beda4f 75c3863 5beda4f f2f0666 5beda4f 75c3863 5beda4f 75c3863 44f4dde 5beda4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 |
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import pipeline
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
from openai import OpenAI
import re
import time
# Load system prompts
system_prompt_t2v = """λΉμ μ λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ."""
system_prompt_i2v = """λΉμ μ μ΄λ―Έμ§ κΈ°λ° λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ."""
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
# Initialize translation pipeline with device and clean_up settings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device,
clean_up_tokenization_spaces=True
)
# Korean text detection function
def contains_korean(text):
korean_pattern = re.compile('[γ±-γ
γ
-γ
£κ°-ν£]')
return bool(korean_pattern.search(text))
def translate_korean_prompt(prompt, max_length=450):
"""
Translate Korean prompt to English if Korean text is detected
Split long text into chunks if necessary
"""
if not contains_korean(prompt):
return prompt
# Split long text into chunks
def split_text(text, max_length):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > max_length:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(word)
else:
current_chunk.append(word)
current_length += len(word) + 1
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
try:
if len(prompt) > max_length:
chunks = split_text(prompt, max_length)
translated_chunks = []
for chunk in chunks:
translated = translator(chunk, max_length=512)[0]['translation_text']
translated_chunks.append(translated)
final_translation = ' '.join(translated_chunks)
else:
final_translation = translator(prompt, max_length=512)[0]['translation_text']
print(f"Original Korean prompt: {prompt}")
print(f"Translated English prompt: {final_translation}")
return final_translation
except Exception as e:
print(f"Translation error: {e}")
return prompt # Return original prompt if translation fails
def enhance_prompt(prompt, type="t2v"):
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
)
enhanced_prompt = response.choices[0].message.content.strip()
print("\n=== ν둬ννΈ μ¦κ° κ²°κ³Ό ===")
print("Original Prompt:")
print(prompt)
print("\nEnhanced Prompt:")
print(enhanced_prompt)
print("========================\n")
return enhanced_prompt
except Exception as e:
print(f"Error during prompt enhancement: {e}")
return prompt
def update_prompt_t2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "t2v")
def update_prompt_i2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "i2v")
def update_prompt(prompt, enhance_toggle, type="t2v"):
if enhance_toggle:
return enhance_prompt(prompt, type)
return prompt
# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
snapshot_download(
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device=device, dtype=torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device=device, dtype=torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(device)
# Preset options for resolution and frame configuration
# Convert frames to seconds assuming 25 FPS
preset_options = [
{"label": "[16:9 HD] 1216x704, 1.6μ΄", "width": 1216, "height": 704, "num_frames": 41},
{"label": "[16:9] 1088x704, 2.0μ΄", "width": 1088, "height": 704, "num_frames": 49},
{"label": "[16:9] 1056x640, 2.3μ΄", "width": 1056, "height": 640, "num_frames": 57},
{"label": "[16:9] 992x608, 2.6μ΄", "width": 992, "height": 608, "num_frames": 65},
{"label": "[16:9] 896x608, 2.9μ΄", "width": 896, "height": 608, "num_frames": 73},
{"label": "[16:9] 896x544, 3.2μ΄", "width": 896, "height": 544, "num_frames": 81},
{"label": "[16:9] 832x544, 3.6μ΄", "width": 832, "height": 544, "num_frames": 89},
{"label": "[16:9] 800x512, 3.9μ΄", "width": 800, "height": 512, "num_frames": 97},
{"label": "[16:9] 768x512, 3.9μ΄", "width": 768, "height": 512, "num_frames": 97},
{"label": "[16:9] 800x480, 4.2μ΄", "width": 800, "height": 480, "num_frames": 105},
{"label": "[16:9] 736x480, 4.5μ΄", "width": 736, "height": 480, "num_frames": 113},
{"label": "[3:2] 704x480, 4.8μ΄", "width": 704, "height": 480, "num_frames": 121},
{"label": "[16:9] 704x448, 5.2μ΄", "width": 704, "height": 448, "num_frames": 129},
{"label": "[16:9] 672x448, 5.5μ΄", "width": 672, "height": 448, "num_frames": 137},
{"label": "[16:9] 640x416, 6.1μ΄", "width": 640, "height": 416, "num_frames": 153},
{"label": "[16:9] 672x384, 6.4μ΄", "width": 672, "height": 384, "num_frames": 161},
{"label": "[16:9] 640x384, 6.8μ΄", "width": 640, "height": 384, "num_frames": 169},
{"label": "[16:9] 608x384, 7.1μ΄", "width": 608, "height": 384, "num_frames": 177},
{"label": "[16:9] 576x384, 7.4μ΄", "width": 576, "height": 384, "num_frames": 185},
{"label": "[16:9] 608x352, 7.7μ΄", "width": 608, "height": 352, "num_frames": 193},
{"label": "[16:9] 576x352, 8.0μ΄", "width": 576, "height": 352, "num_frames": 201},
{"label": "[16:9] 544x352, 8.4μ΄", "width": 544, "height": 352, "num_frames": 209},
{"label": "[3:2] 512x352, 9.3μ΄", "width": 512, "height": 352, "num_frames": 233},
{"label": "[16:9] 544x320, 9.6μ΄", "width": 544, "height": 320, "num_frames": 241},
{"label": "[16:9] 512x320, 10.3μ΄", "width": 512, "height": 320, "num_frames": 257},
]
def preset_changed(preset):
selected = next((item for item in preset_options if item["label"] == preset), None)
if selected is None:
raise gr.Error("Invalid preset selected")
return [
gr.State(value=selected["height"]),
gr.State(value=selected["width"]),
gr.State(value=selected["num_frames"]),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def generate_video_from_text(
prompt,
enhance_prompt_toggle,
negative_prompt,
frame_rate,
seed,
num_inference_steps,
guidance_scale,
height,
width,
num_frames,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ
μ μ 곡ν΄μ£ΌμΈμ.",
duration=5,
)
# ν둬ννΈ κ°μ μ΄ νμ±νλ κ²½μ°
if enhance_prompt_toggle:
prompt = enhance_prompt(prompt, "t2v")
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
# κΈ°λ³Έκ° μ€μ
height = height or 320
width = width or 512
num_frames = num_frames or 257
frame_rate = frame_rate or 25
seed = seed or 171198
num_inference_steps = num_inference_steps or 41
guidance_scale = guidance_scale or 4.0
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def generate_video_from_image(
image_path,
prompt,
enhance_prompt_toggle,
negative_prompt,
frame_rate,
seed,
num_inference_steps,
guidance_scale,
height,
width,
num_frames,
progress=gr.Progress(),
):
if not image_path:
raise gr.Error("μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ 곡ν΄μ£ΌμΈμ.", duration=5)
if len(prompt.strip()) < 50:
raise gr.Error(
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ
μ μ 곡ν΄μ£ΌμΈμ.",
duration=5,
)
# ν둬ννΈ κ°μ μ΄ νμ±νλ κ²½μ°
if enhance_prompt_toggle:
prompt = enhance_prompt(prompt, "i2v")
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
# κΈ°λ³Έκ° μ€μ
height = height or 320
width = width or 512
num_frames = num_frames or 257
frame_rate = frame_rate or 25
seed = seed or 171198
num_inference_steps = num_inference_steps or 41
guidance_scale = guidance_scale or 4.0
# μ΄λ―Έμ§ λ‘λ λ° μ μ²λ¦¬
media_items = (
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
except Exception as e:
raise gr.Error(
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
if 'images' in locals():
del images
if 'video_np' in locals():
del video_np
if 'media_items' in locals():
del media_items
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1000000,
step=1,
value=171198
)
inference_steps = gr.Slider(
label="4.2 Inference Steps",
minimum=1,
maximum=50,
step=1,
value=41,
visible=False
)
guidance_scale = gr.Slider(
label="4.3 Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0,
visible=False
)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=320,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=512,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=200,
step=1,
value=257,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
system_prompt_scenario = """λΉμ μ μμ μ€ν¬λ¦½νΈμ λ§λ λ°°κ²½ μμμ μμ±νκΈ° μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ μ€ν¬λ¦½νΈμ λΆμκΈ°μ λ§₯λ½μ μκ°μ λ°°κ²½μΌλ‘ νννλ, λ€μ μμΉμ λ°λμ μ€μνμΈμ:
1. μ νμ΄λ μλΉμ€λ₯Ό μ§μ μ μΌλ‘ λ¬μ¬νμ§ λ§ κ²
2. μ€ν¬λ¦½νΈμ κ°μ±κ³Ό ν€μ€λ§€λλ₯Ό νννλ λ°°κ²½ μμμ μ§μ€ν κ²
3. 5κ° μΉμ
μ΄ νλμ μ΄μΌκΈ°μ²λΌ μμ°μ€λ½κ² μ°κ²°λλλ‘ ν κ²
4. μΆμμ μ΄κ³ μμ μ μΈ μκ° ννμ νμ©ν κ²
κ° μΉμ
λ³ ν둬ννΈ μμ± κ°μ΄λ:
1. λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬
2. λ¬Έμ μ κΈ°: κΈ΄μ₯κ°μ΄λ κ°λ±μ μμνλ λΆμκΈ° μλ λ°°κ²½
3. ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν
4. λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½
5. κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½
λͺ¨λ μΉμ
μ΄ μΌκ΄λ μ€νμΌκ³Ό ν€μ μ μ§νλ©΄μλ μμ°μ€λ½κ² μ΄μ΄μ§λλ‘ κ΅¬μ±νμΈμ.
κ° μΉμ
μ ν둬ννΈ μμ±μ λ°λμ λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ.
"""
def analyze_scenario(scenario):
"""μλ리μ€λ₯Ό λΆμνμ¬ κ° μΉμ
λ³ λ°°κ²½ μμμ© ν둬ννΈ μμ±"""
try:
# κ° μΉμ
λ³ ν둬ννΈ μμ±μ μν λ©μμ§ κ΅¬μ±
section_prompts = []
for section_num in range(1, 6):
section_descriptions = {
1: "λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬",
2: "ν₯λ―Έ μ λ°: κΈ΄μ₯κ°μ΄λ κ°λ±μ μμνλ λΆμκΈ° μλ λ°°κ²½",
3: "ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν",
4: "λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½",
5: "κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½"
}
messages = [
{"role": "system", "content": system_prompt_scenario},
{"role": "user", "content": f"""
λ€μ μ€ν¬λ¦½νΈμ {section_num}λ²μ§Έ μΉμ
({section_descriptions[section_num]})μ λν
λ°°κ²½ μμ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ.
μ€ν¬λ¦½νΈ:
{scenario}
μ£Όμμ¬ν:
1. ν΄λΉ μΉμ
μ νΉμ±({section_descriptions[section_num]})μ λ§λ λΆμκΈ°μ ν€μ λ°μνμΈμ.
2. μ§μ μ μΈ μ ν/μλΉμ€ λ¬μ¬λ νΌνκ³ , κ°μ±μ μ΄κ³ μμ μ μΈ λ°°κ²½ μμμ μ§μ€νμΈμ.
3. λ€μ ꡬ쑰λ₯Ό λ°λμ ν¬ν¨νμΈμ:
- μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
- ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
- λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
- μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
- μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
- λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨"""}
]
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=1000,
temperature=0.7
)
section_prompt = response.choices[0].message.content.strip()
section_prompts.append(f"{section_num}. {section_prompt}")
# API μμ² μ¬μ΄μ 짧μ λλ μ΄ μΆκ°
time.sleep(1)
return section_prompts
except Exception as e:
print(f"Error during scenario analysis: {e}")
return ["Error occurred during analysis"] * 5
def generate_section_video(prompt, preset, section_number=1, base_seed=171198, progress=gr.Progress()):
"""κ° μΉμ
μ λΉλμ€ μμ±"""
try:
if not prompt or len(prompt.strip()) < 50:
raise gr.Error("ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€.")
if not preset:
raise gr.Error("ν΄μλ ν리μ
μ μ νν΄μ£ΌμΈμ.")
selected = next((item for item in preset_options if item["label"] == preset), None)
if not selected:
raise gr.Error("μ¬λ°λ₯΄μ§ μμ ν리μ
μ
λλ€.")
section_seed = base_seed + section_number
return generate_video_from_text(
prompt=prompt,
enhance_prompt_toggle=False, # μΉμ
μμ±μλ ν둬ννΈ μ¦κ° λΉνμ±ν
negative_prompt="low quality, worst quality, deformed, distorted, warped",
frame_rate=25,
seed=section_seed,
num_inference_steps=41,
guidance_scale=4.0,
height=selected["height"],
width=selected["width"],
num_frames=selected["num_frames"],
progress=progress
)
except Exception as e:
print(f"Error in section {section_number}: {e}")
raise gr.Error(f"μΉμ
{section_number} μμ± μ€ μ€λ₯: {str(e)}")
finally:
torch.cuda.empty_cache()
gc.collect()
def generate_single_section_prompt(scenario, section_number):
"""κ°λ³ μΉμ
μ λν ν둬ννΈ μμ±"""
section_descriptions = {
1: "λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬",
2: "ν₯λ―Έ μ λ°: ν₯λ―Έλ₯Ό μ λ°νκ³ κΈ°λκ°μ μ¦νμν€λ λ°°κ²½",
3: "ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν",
4: "λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½",
5: "κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½"
}
messages = [
{"role": "system", "content": system_prompt_scenario},
{"role": "user", "content": f"""
λ€μ μ€ν¬λ¦½νΈμ {section_number}λ²μ§Έ μΉμ
({section_descriptions[section_number]})μ λν
λ°°κ²½ μμ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ.
μ€ν¬λ¦½νΈ:
{scenario}
μ£Όμμ¬ν:
1. ν΄λΉ μΉμ
μ νΉμ±({section_descriptions[section_number]})μ λ§λ λΆμκΈ°μ ν€μ λ°μνμΈμ.
2. μ§μ μ μΈ μ ν/μλΉμ€ λ¬μ¬λ νΌνκ³ , κ°μ±μ μ΄κ³ μμ μ μΈ λ°°κ²½ μμμ μ§μ€νμΈμ.
3. λ€μ ꡬ쑰λ₯Ό λ°λμ ν¬ν¨νμΈμ:
- μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
- ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
- λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
- μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
- μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
- λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨"""}
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=1000, # ν ν° μ μ¦κ°
temperature=0.7
)
generated_prompt = response.choices[0].message.content.strip()
return f"{section_number}. {generated_prompt}"
except Exception as e:
print(f"Error during prompt generation for section {section_number}: {e}")
return f"Error occurred during prompt generation for section {section_number}"
# λΉλμ€ κ²°ν© ν¨μ μΆκ°
def combine_videos(video_paths, output_path):
"""μ¬λ¬ λΉλμ€λ₯Ό νλλ‘ κ²°ν©"""
if not all(video_paths):
raise gr.Error("λͺ¨λ μΉμ
μ μμμ΄ μμ±λμ΄μΌ ν©λλ€.")
try:
# 첫 λ²μ§Έ λΉλμ€μ μμ± κ°μ Έμ€κΈ°
cap = cv2.VideoCapture(video_paths[0])
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# μΆλ ₯ λΉλμ€ μ€μ
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# κ° λΉλμ€ μμ°¨μ μΌλ‘ κ²°ν©
for video_path in video_paths:
if video_path and os.path.exists(video_path):
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if not ret:
break
out.write(frame)
cap.release()
out.release()
return output_path
except Exception as e:
raise gr.Error(f"λΉλμ€ κ²°ν© μ€ μ€λ₯ λ°μ: {e}")
def merge_section_videos(section1, section2, section3, section4, section5):
"""μΉμ
λΉλμ€λ€μ νλλ‘ κ²°ν©"""
videos = []
# κ° μΉμ
λΉλμ€ νμΈ λ° μ²λ¦¬
for i, video_path in enumerate([section1, section2, section3, section4, section5], 1):
if video_path:
if os.path.exists(video_path):
try:
# λΉλμ€ νμΌ κ²μ¦
cap = cv2.VideoCapture(video_path)
if cap.isOpened():
videos.append(video_path)
cap.release()
else:
raise gr.Error(f"μΉμ
{i}μ μμ νμΌμ΄ μμλμκ±°λ μ½μ μ μμ΅λλ€.")
except Exception as e:
raise gr.Error(f"μΉμ
{i} μμ μ²λ¦¬ μ€ μ€λ₯: {str(e)}")
else:
raise gr.Error(f"μΉμ
{i}μ μμ νμΌμ μ°Ύμ μ μμ΅λλ€.")
else:
raise gr.Error(f"μΉμ
{i}μ μμμ΄ μμ΅λλ€.")
if not videos:
raise gr.Error("κ²°ν©ν μμμ΄ μμ΅λλ€.")
try:
output_path = tempfile.mktemp(suffix=".mp4")
# 첫 λ²μ§Έ λΉλμ€μ μμ± κ°μ Έμ€κΈ°
cap = cv2.VideoCapture(videos[0])
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# μΆλ ₯ λΉλμ€ μ€μ
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# κ° λΉλμ€ μμ°¨μ μΌλ‘ κ²°ν©
for video_path in videos:
cap = cv2.VideoCapture(video_path)
while True:
ret, frame = cap.read()
if not ret:
break
# νλ μ ν¬κΈ°κ° λ€λ₯Έ κ²½μ° λ¦¬μ¬μ΄μ¦
if frame.shape[:2] != (height, width):
frame = cv2.resize(frame, (width, height))
out.write(frame)
cap.release()
out.release()
print(f"Successfully merged {len(videos)} videos")
return output_path
except Exception as e:
raise gr.Error(f"λΉλμ€ κ²°ν© μ€ μ€λ₯ λ°μ: {e}")
def generate_script(topic):
"""μ£Όμ μ λ§λ μ€ν¬λ¦½νΈ μμ±"""
if not topic:
return "μ£Όμ λ₯Ό μ
λ ₯ν΄μ£ΌμΈμ."
messages = [
{"role": "system", "content": """λΉμ μ μμ μ€ν¬λ¦½νΈ μμ± μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ μ£Όμ λ‘ λ€μ ꡬ쑰μ λ§λ 5κ° μΉμ
μ μ€ν¬λ¦½νΈλ₯Ό μμ±ν΄μ£ΌμΈμ:
1. λ°°κ²½ λ° νμμ±: μ£Όμ μκ°μ μμ²μμ ν₯λ―Έ μ λ°
2. ν₯λ―Έ μ λ°: ꡬ체μ μΈ λ΄μ© μ κ°μ νΈκΈ°μ¬ μκ·Ή
3. ν΄κ²°μ±
μ μ: ν΅μ¬ λ΄μ©κ³Ό ν΄κ²°λ°©μ μ μ
4. λ³Έλ‘ : μμΈν μ€λͺ
κ³Ό μ₯μ λΆκ°
5. κ²°λ‘ : ν΅μ¬ λ©μμ§ κ°μ‘°μ νλ μ λ
κ° μΉμ
μ μμ°μ€λ½κ² μ°κ²°λμ΄μΌ νλ©°,
μ 체μ μΌλ‘ μΌκ΄λ ν€κ³Ό λΆμκΈ°λ₯Ό μ μ§νλ©΄μλ
μμ²μμ κ΄μ¬μ λκΉμ§ μ μ§ν μ μλλ‘ μμ±ν΄μ£ΌμΈμ."""},
{"role": "user", "content": f"λ€μ μ£Όμ λ‘ μμ μ€ν¬λ¦½νΈλ₯Ό μμ±ν΄μ£ΌμΈμ: {topic}"}
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
temperature=0.7
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Error during script generation: {e}")
return "μ€ν¬λ¦½νΈ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€."
def cleanup():
"""λ©λͺ¨λ¦¬ μ 리 ν¨μ"""
torch.cuda.empty_cache()
gc.collect()
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as iface:
# State λ³μλ€μ μ΄κΈ°ν
txt2vid_current_height = gr.State(value=320)
txt2vid_current_width = gr.State(value=512)
txt2vid_current_num_frames = gr.State(value=257)
img2vid_current_height = gr.State(value=320)
img2vid_current_width = gr.State(value=512)
img2vid_current_num_frames = gr.State(value=257)
with gr.Tabs():
# Text to Video Tab
with gr.TabItem("ν
μ€νΈλ‘ λΉλμ€ λ§λ€κΈ°"):
with gr.Row():
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: ν둬ννΈ μ
λ ₯",
placeholder="μμ±νκ³ μΆμ λΉλμ€λ₯Ό μ€λͺ
νμΈμ (μ΅μ 50μ)...",
value="κ·μ¬μ΄ κ³ μμ΄",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="ν둬ννΈ μ¦κ°",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: λ€κ±°ν°λΈ ν둬ννΈ μ
λ ₯",
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3μ΄",
label="Step 2: ν΄μλ ν리μ
μ ν",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3: νλ μ λ μ΄νΈ",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 3: λΉλμ€ μμ±",
variant="primary",
size="lg",
)
with gr.Column():
txt2vid_output = gr.Video(label="μμ±λ λΉλμ€")
# Image to Video Tab
with gr.TabItem("μ΄λ―Έμ§λ‘ λΉλμ€ λ§λ€κΈ°"):
with gr.Row():
with gr.Column():
img2vid_image = gr.Image(
type="filepath",
label="Step 1: μ
λ ₯ μ΄λ―Έμ§ μ
λ‘λ",
elem_id="image_upload",
)
img2vid_prompt = gr.Textbox(
label="Step 2: ν둬ννΈ μ
λ ₯",
placeholder="μ΄λ―Έμ§λ₯Ό μ΄λ»κ² μ λλ©μ΄μ
νν μ§ μ€λͺ
νμΈμ (μ΅μ 50μ)...",
value="κ·μ¬μ΄ κ³ μμ΄",
lines=5,
)
img2vid_enhance_toggle = Toggle(
label="ν둬ννΈ μ¦κ°",
value=False,
interactive=True,
)
img2vid_negative_prompt = gr.Textbox(
label="Step 3: λ€κ±°ν°λΈ ν둬ννΈ μ
λ ₯",
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
img2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3μ΄",
label="Step 3: ν΄μλ ν리μ
μ ν",
)
img2vid_frame_rate = gr.Slider(
label="Step 4: νλ μ λ μ΄νΈ",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
img2vid_advanced = create_advanced_options()
img2vid_generate = gr.Button(
"Step 4: λΉλμ€ μμ±",
variant="primary",
size="lg",
)
with gr.Column():
img2vid_output = gr.Video(label="μμ±λ λΉλμ€")
# Scenario Tab
with gr.TabItem("μλ리μ€λ‘ λΉλμ€ λ§λ€κΈ°(μνΌ)"):
with gr.Row():
with gr.Column(scale=1):
script_topic = gr.Textbox(
label="μ€ν¬λ¦½νΈ μμ±",
placeholder="κ²¨μΈ μΌλ³Έ μ¨μ² μ¬νμ μ£Όμ λ‘ λ°μ λλμΌλ‘ μ€ν¬λ¦½νΈ μμ±νλΌ",
lines=2
)
generate_script_btn = gr.Button("μ€ν¬λ¦½νΈ μμ±", variant="primary")
scenario_input = gr.Textbox(
label="μμ μ€ν¬λ¦½νΈ μ
λ ₯",
placeholder="μ 체 μλ리μ€λ₯Ό μ
λ ₯νμΈμ...",
lines=10
)
scenario_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3μ΄",
label="νλ©΄ ν¬κΈ° μ ν"
)
analyze_btn = gr.Button("μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±", variant="primary")
with gr.Column(scale=2):
with gr.Row():
# μΉμ
1
with gr.Column():
section1_prompt = gr.Textbox(
label="1. λ°°κ²½ λ° νμμ±",
lines=4
)
with gr.Row():
section1_regenerate = gr.Button("π ν둬ννΈ μμ±")
section1_generate = gr.Button("π μμ μμ±")
section1_video = gr.Video(label="μΉμ
1 μμ")
# μΉμ
2
with gr.Column():
section2_prompt = gr.Textbox(
label="2. ν₯λ―Έ μ λ°",
lines=4
)
with gr.Row():
section2_regenerate = gr.Button("π ν둬ννΈ μμ±")
section2_generate = gr.Button("π μμ μμ±")
section2_video = gr.Video(label="μΉμ
2 μμ")
with gr.Row():
# μΉμ
3
with gr.Column():
section3_prompt = gr.Textbox(
label="3. ν΄κ²°μ±
μ μ",
lines=4
)
with gr.Row():
section3_regenerate = gr.Button("π ν둬ννΈ μμ±")
section3_generate = gr.Button("π μμ μμ±")
section3_video = gr.Video(label="μΉμ
3 μμ")
# μΉμ
4
with gr.Column():
section4_prompt = gr.Textbox(
label="4. λ³Έλ‘ ",
lines=4
)
with gr.Row():
section4_regenerate = gr.Button("π ν둬ννΈ μμ±")
section4_generate = gr.Button("π μμ μμ±")
section4_video = gr.Video(label="μΉμ
4 μμ")
with gr.Row():
# μΉμ
5
with gr.Column():
section5_prompt = gr.Textbox(
label="5. κ²°λ‘ λ° κ°μ‘°",
lines=4
)
with gr.Row():
section5_regenerate = gr.Button("π ν둬ννΈ μμ±")
section5_generate = gr.Button("π μμ μμ±")
section5_video = gr.Video(label="μΉμ
5 μμ")
# ν΅ν© μμ μΉμ
with gr.Row():
with gr.Column(scale=1):
merge_videos_btn = gr.Button("ν΅ν© μμ μμ±", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Row():
merged_video_output = gr.Video(label="ν΅ν© μμ")
# Text to Video Tab handlers
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=[
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
txt2vid_advanced[3], # height_slider
txt2vid_advanced[4], # width_slider
txt2vid_advanced[5], # num_frames_slider
]
)
txt2vid_enhance_toggle.change(
fn=update_prompt_t2v,
inputs=[txt2vid_prompt, txt2vid_enhance_toggle],
outputs=txt2vid_prompt
)
txt2vid_generate.click(
fn=generate_video_from_text,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
txt2vid_advanced[0], # seed
txt2vid_advanced[1], # inference_steps
txt2vid_advanced[2], # guidance_scale
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
],
outputs=txt2vid_output,
)
# Image to Video Tab handlers
img2vid_preset.change(
fn=preset_changed,
inputs=[img2vid_preset],
outputs=[
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
img2vid_advanced[3], # height_slider
img2vid_advanced[4], # width_slider
img2vid_advanced[5], # num_frames_slider
]
)
img2vid_enhance_toggle.change(
fn=update_prompt_i2v,
inputs=[img2vid_prompt, img2vid_enhance_toggle],
outputs=img2vid_prompt
)
img2vid_generate.click(
fn=generate_video_from_image,
inputs=[
img2vid_image,
img2vid_prompt,
img2vid_enhance_toggle,
img2vid_negative_prompt,
img2vid_frame_rate,
img2vid_advanced[0], # seed
img2vid_advanced[1], # inference_steps
img2vid_advanced[2], # guidance_scale
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
],
outputs=img2vid_output,
)
# Scenario Tab handlers
generate_script_btn.click(
fn=generate_script,
inputs=[script_topic],
outputs=[scenario_input]
)
analyze_btn.click(
fn=analyze_scenario,
inputs=[scenario_input],
outputs=[
section1_prompt, section2_prompt, section3_prompt,
section4_prompt, section5_prompt
]
)
# μΉμ
λ³ ν둬ννΈ μ¬μμ± νΈλ€λ¬
section1_regenerate.click(
fn=lambda x: generate_single_section_prompt(x, 1),
inputs=[scenario_input],
outputs=section1_prompt
)
section2_regenerate.click(
fn=lambda x: generate_single_section_prompt(x, 2),
inputs=[scenario_input],
outputs=section2_prompt
)
section3_regenerate.click(
fn=lambda x: generate_single_section_prompt(x, 3),
inputs=[scenario_input],
outputs=section3_prompt
)
section4_regenerate.click(
fn=lambda x: generate_single_section_prompt(x, 4),
inputs=[scenario_input],
outputs=section4_prompt
)
section5_regenerate.click(
fn=lambda x: generate_single_section_prompt(x, 5),
inputs=[scenario_input],
outputs=section5_prompt
)
# μΉμ
λ³ λΉλμ€ μμ± νΈλ€λ¬
section1_generate.click(
fn=lambda p, pr: generate_section_video(p, pr, 1),
inputs=[section1_prompt, scenario_preset],
outputs=section1_video
)
section2_generate.click(
fn=lambda p, pr: generate_section_video(p, pr, 2),
inputs=[section2_prompt, scenario_preset],
outputs=section2_video
)
section3_generate.click(
fn=lambda p, pr: generate_section_video(p, pr, 3),
inputs=[section3_prompt, scenario_preset],
outputs=section3_video
)
section4_generate.click(
fn=lambda p, pr: generate_section_video(p, pr, 4),
inputs=[section4_prompt, scenario_preset],
outputs=section4_video
)
section5_generate.click(
fn=lambda p, pr: generate_section_video(p, pr, 5),
inputs=[section5_prompt, scenario_preset],
outputs=section5_video
)
# ν΅ν© μμ μμ± νΈλ€λ¬
merge_videos_btn.click(
fn=merge_section_videos,
inputs=[
section1_video,
section2_video,
section3_video,
section4_video,
section5_video
],
outputs=merged_video_output
)
if __name__ == "__main__":
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
share=True,
show_api=False
) |