Spaces:
Running
Running
Update app-backup1.py
Browse files- app-backup1.py +472 -79
app-backup1.py
CHANGED
@@ -55,24 +55,68 @@ hf_token = os.getenv("HF_TOKEN")
|
|
55 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
56 |
client = OpenAI(api_key=openai_api_key)
|
57 |
|
58 |
-
# Initialize translation pipeline
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Korean text detection function
|
62 |
def contains_korean(text):
|
63 |
korean_pattern = re.compile('[γ±-γ
γ
-γ
£κ°-ν£]')
|
64 |
return bool(korean_pattern.search(text))
|
65 |
|
66 |
-
def translate_korean_prompt(prompt):
|
67 |
"""
|
68 |
Translate Korean prompt to English if Korean text is detected
|
|
|
69 |
"""
|
70 |
-
if contains_korean(prompt):
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
print(f"Original Korean prompt: {prompt}")
|
73 |
-
print(f"Translated English prompt: {
|
74 |
-
return
|
75 |
-
|
|
|
|
|
|
|
76 |
|
77 |
def enhance_prompt(prompt, type="t2v"):
|
78 |
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
|
@@ -195,58 +239,55 @@ pipeline = XoraVideoPipeline(
|
|
195 |
vae=vae,
|
196 |
).to(device)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
# Preset options for resolution and frame configuration
|
199 |
# Convert frames to seconds assuming 25 FPS
|
200 |
preset_options = [
|
201 |
-
{"label": "1216x704, 1.6μ΄", "width": 1216, "height": 704, "num_frames": 41},
|
202 |
-
{"label": "1088x704, 2.0μ΄", "width": 1088, "height": 704, "num_frames": 49},
|
203 |
-
{"label": "1056x640, 2.3μ΄", "width": 1056, "height": 640, "num_frames": 57},
|
204 |
-
{"label": "992x608, 2.6μ΄", "width": 992, "height": 608, "num_frames": 65},
|
205 |
-
{"label": "896x608, 2.9μ΄", "width": 896, "height": 608, "num_frames": 73},
|
206 |
-
{"label": "896x544, 3.2μ΄", "width": 896, "height": 544, "num_frames": 81},
|
207 |
-
{"label": "832x544, 3.6μ΄", "width": 832, "height": 544, "num_frames": 89},
|
208 |
-
{"label": "800x512, 3.9μ΄", "width": 800, "height": 512, "num_frames": 97},
|
209 |
-
{"label": "768x512, 3.9μ΄", "width": 768, "height": 512, "num_frames": 97},
|
210 |
-
{"label": "800x480, 4.2μ΄", "width": 800, "height": 480, "num_frames": 105},
|
211 |
-
{"label": "736x480, 4.5μ΄", "width": 736, "height": 480, "num_frames": 113},
|
212 |
-
{"label": "704x480, 4.8μ΄", "width": 704, "height": 480, "num_frames": 121},
|
213 |
-
{"label": "704x448, 5.2μ΄", "width": 704, "height": 448, "num_frames": 129},
|
214 |
-
{"label": "672x448, 5.5μ΄", "width": 672, "height": 448, "num_frames": 137},
|
215 |
-
{"label": "640x416, 6.1μ΄", "width": 640, "height": 416, "num_frames": 153},
|
216 |
-
{"label": "672x384, 6.4μ΄", "width": 672, "height": 384, "num_frames": 161},
|
217 |
-
{"label": "640x384, 6.8μ΄", "width": 640, "height": 384, "num_frames": 169},
|
218 |
-
{"label": "608x384, 7.1μ΄", "width": 608, "height": 384, "num_frames": 177},
|
219 |
-
{"label": "576x384, 7.4μ΄", "width": 576, "height": 384, "num_frames": 185},
|
220 |
-
{"label": "608x352, 7.7μ΄", "width": 608, "height": 352, "num_frames": 193},
|
221 |
-
{"label": "576x352, 8.0μ΄", "width": 576, "height": 352, "num_frames": 201},
|
222 |
-
{"label": "544x352, 8.4μ΄", "width": 544, "height": 352, "num_frames": 209},
|
223 |
-
{"label": "512x352, 9.3μ΄", "width": 512, "height": 352, "num_frames": 233},
|
224 |
-
{"label": "544x320, 9.6μ΄", "width": 544, "height": 320, "num_frames": 241},
|
225 |
-
{"label": "512x320, 10.3μ΄", "width": 512, "height": 320, "num_frames": 257},
|
226 |
]
|
227 |
|
228 |
def preset_changed(preset):
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
gr.update(visible=False),
|
239 |
-
)
|
240 |
-
else:
|
241 |
-
return (
|
242 |
-
None,
|
243 |
-
None,
|
244 |
-
None,
|
245 |
-
gr.update(visible=True),
|
246 |
-
gr.update(visible=True),
|
247 |
-
gr.update(visible=True),
|
248 |
-
)
|
249 |
-
|
250 |
|
251 |
def generate_video_from_text(
|
252 |
prompt="",
|
@@ -256,8 +297,8 @@ def generate_video_from_text(
|
|
256 |
seed=171198,
|
257 |
num_inference_steps=41,
|
258 |
guidance_scale=4,
|
259 |
-
height=
|
260 |
-
width=
|
261 |
num_frames=257,
|
262 |
progress=gr.Progress(),
|
263 |
):
|
@@ -335,11 +376,11 @@ def generate_video_from_image(
|
|
335 |
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
|
336 |
frame_rate=25,
|
337 |
seed=171198,
|
338 |
-
num_inference_steps=
|
339 |
guidance_scale=4,
|
340 |
-
height=
|
341 |
-
width=
|
342 |
-
num_frames=
|
343 |
progress=gr.Progress(),
|
344 |
):
|
345 |
print("Height: ", height)
|
@@ -432,7 +473,7 @@ def create_advanced_options():
|
|
432 |
minimum=1,
|
433 |
maximum=50,
|
434 |
step=1,
|
435 |
-
value=
|
436 |
visible=False
|
437 |
)
|
438 |
guidance_scale = gr.Slider(
|
@@ -448,7 +489,7 @@ def create_advanced_options():
|
|
448 |
minimum=256,
|
449 |
maximum=1024,
|
450 |
step=64,
|
451 |
-
value=
|
452 |
visible=False,
|
453 |
)
|
454 |
width_slider = gr.Slider(
|
@@ -456,7 +497,7 @@ def create_advanced_options():
|
|
456 |
minimum=256,
|
457 |
maximum=1024,
|
458 |
step=64,
|
459 |
-
value=
|
460 |
visible=False,
|
461 |
)
|
462 |
num_frames_slider = gr.Slider(
|
@@ -464,7 +505,7 @@ def create_advanced_options():
|
|
464 |
minimum=1,
|
465 |
maximum=200,
|
466 |
step=1,
|
467 |
-
value=
|
468 |
visible=False,
|
469 |
)
|
470 |
|
@@ -477,6 +518,180 @@ def create_advanced_options():
|
|
477 |
num_frames_slider,
|
478 |
]
|
479 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
# Gradio Interface Definition
|
481 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
482 |
with gr.Tabs():
|
@@ -504,14 +719,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
504 |
visible=False
|
505 |
)
|
506 |
|
507 |
-
# νμ¬ μ νλ κ°λ€μ μ μ₯ν μν λ³μλ€
|
508 |
-
txt2vid_current_height = gr.State(value=512)
|
509 |
-
txt2vid_current_width = gr.State(value=320)
|
510 |
-
txt2vid_current_num_frames = gr.State(value=257)
|
511 |
-
|
512 |
txt2vid_preset = gr.Dropdown(
|
513 |
choices=[p["label"] for p in preset_options],
|
514 |
-
value="512x320, 10.3μ΄",
|
515 |
label="Step 2: ν΄μλ ν리μ
μ ν",
|
516 |
)
|
517 |
|
@@ -562,14 +772,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
562 |
visible=False
|
563 |
)
|
564 |
|
565 |
-
# νμ¬ μ νλ κ°λ€μ μ μ₯ν μν λ³μλ€
|
566 |
-
img2vid_current_height = gr.State(value=512)
|
567 |
-
img2vid_current_width = gr.State(value=768)
|
568 |
-
img2vid_current_num_frames = gr.State(value=97)
|
569 |
-
|
570 |
img2vid_preset = gr.Dropdown(
|
571 |
choices=[p["label"] for p in preset_options],
|
572 |
-
value="512x320, 10.3μ΄",
|
573 |
label="Step 3: ν΄μλ ν리μ
μ ν",
|
574 |
)
|
575 |
|
@@ -592,7 +797,101 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
592 |
with gr.Column():
|
593 |
img2vid_output = gr.Video(label="μμ±λ λΉλμ€")
|
594 |
|
595 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
txt2vid_preset.change(
|
597 |
fn=preset_changed,
|
598 |
inputs=[txt2vid_preset],
|
@@ -617,7 +916,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
617 |
txt2vid_enhance_toggle,
|
618 |
txt2vid_negative_prompt,
|
619 |
txt2vid_frame_rate,
|
620 |
-
*txt2vid_advanced[:3],
|
621 |
txt2vid_current_height,
|
622 |
txt2vid_current_width,
|
623 |
txt2vid_current_num_frames,
|
@@ -653,7 +952,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
653 |
img2vid_enhance_toggle,
|
654 |
img2vid_negative_prompt,
|
655 |
img2vid_frame_rate,
|
656 |
-
*img2vid_advanced[:3],
|
657 |
img2vid_current_height,
|
658 |
img2vid_current_width,
|
659 |
img2vid_current_num_frames,
|
@@ -664,6 +963,100 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
664 |
queue=True,
|
665 |
)
|
666 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
667 |
if __name__ == "__main__":
|
668 |
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
669 |
share=True, show_api=False
|
|
|
55 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
56 |
client = OpenAI(api_key=openai_api_key)
|
57 |
|
58 |
+
# Initialize translation pipeline with device and clean_up settings
|
59 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
+
translator = pipeline(
|
61 |
+
"translation",
|
62 |
+
model="Helsinki-NLP/opus-mt-ko-en",
|
63 |
+
device=device,
|
64 |
+
clean_up_tokenization_spaces=True
|
65 |
+
)
|
66 |
|
67 |
# Korean text detection function
|
68 |
def contains_korean(text):
|
69 |
korean_pattern = re.compile('[γ±-γ
γ
-γ
£κ°-ν£]')
|
70 |
return bool(korean_pattern.search(text))
|
71 |
|
72 |
+
def translate_korean_prompt(prompt, max_length=450):
|
73 |
"""
|
74 |
Translate Korean prompt to English if Korean text is detected
|
75 |
+
Split long text into chunks if necessary
|
76 |
"""
|
77 |
+
if not contains_korean(prompt):
|
78 |
+
return prompt
|
79 |
+
|
80 |
+
# Split long text into chunks
|
81 |
+
def split_text(text, max_length):
|
82 |
+
words = text.split()
|
83 |
+
chunks = []
|
84 |
+
current_chunk = []
|
85 |
+
current_length = 0
|
86 |
+
|
87 |
+
for word in words:
|
88 |
+
if current_length + len(word) + 1 > max_length:
|
89 |
+
chunks.append(' '.join(current_chunk))
|
90 |
+
current_chunk = [word]
|
91 |
+
current_length = len(word)
|
92 |
+
else:
|
93 |
+
current_chunk.append(word)
|
94 |
+
current_length += len(word) + 1
|
95 |
+
|
96 |
+
if current_chunk:
|
97 |
+
chunks.append(' '.join(current_chunk))
|
98 |
+
return chunks
|
99 |
+
|
100 |
+
try:
|
101 |
+
if len(prompt) > max_length:
|
102 |
+
chunks = split_text(prompt, max_length)
|
103 |
+
translated_chunks = []
|
104 |
+
|
105 |
+
for chunk in chunks:
|
106 |
+
translated = translator(chunk, max_length=512)[0]['translation_text']
|
107 |
+
translated_chunks.append(translated)
|
108 |
+
|
109 |
+
final_translation = ' '.join(translated_chunks)
|
110 |
+
else:
|
111 |
+
final_translation = translator(prompt, max_length=512)[0]['translation_text']
|
112 |
+
|
113 |
print(f"Original Korean prompt: {prompt}")
|
114 |
+
print(f"Translated English prompt: {final_translation}")
|
115 |
+
return final_translation
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
print(f"Translation error: {e}")
|
119 |
+
return prompt # Return original prompt if translation fails
|
120 |
|
121 |
def enhance_prompt(prompt, type="t2v"):
|
122 |
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
|
|
|
239 |
vae=vae,
|
240 |
).to(device)
|
241 |
|
242 |
+
# State λ³μλ€μ μ΄κΈ°ν μμ
|
243 |
+
txt2vid_current_height = gr.State(value=320)
|
244 |
+
txt2vid_current_width = gr.State(value=512)
|
245 |
+
txt2vid_current_num_frames = gr.State(value=257)
|
246 |
+
|
247 |
+
img2vid_current_height = gr.State(value=320)
|
248 |
+
img2vid_current_width = gr.State(value=512)
|
249 |
+
img2vid_current_num_frames = gr.State(value=257)
|
250 |
+
|
251 |
# Preset options for resolution and frame configuration
|
252 |
# Convert frames to seconds assuming 25 FPS
|
253 |
preset_options = [
|
254 |
+
{"label": "[16:9 HD] 1216x704, 1.6μ΄", "width": 1216, "height": 704, "num_frames": 41},
|
255 |
+
{"label": "[16:9] 1088x704, 2.0μ΄", "width": 1088, "height": 704, "num_frames": 49},
|
256 |
+
{"label": "[16:9] 1056x640, 2.3μ΄", "width": 1056, "height": 640, "num_frames": 57},
|
257 |
+
{"label": "[16:9] 992x608, 2.6μ΄", "width": 992, "height": 608, "num_frames": 65},
|
258 |
+
{"label": "[16:9] 896x608, 2.9μ΄", "width": 896, "height": 608, "num_frames": 73},
|
259 |
+
{"label": "[16:9] 896x544, 3.2μ΄", "width": 896, "height": 544, "num_frames": 81},
|
260 |
+
{"label": "[16:9] 832x544, 3.6μ΄", "width": 832, "height": 544, "num_frames": 89},
|
261 |
+
{"label": "[16:9] 800x512, 3.9μ΄", "width": 800, "height": 512, "num_frames": 97},
|
262 |
+
{"label": "[16:9] 768x512, 3.9μ΄", "width": 768, "height": 512, "num_frames": 97},
|
263 |
+
{"label": "[16:9] 800x480, 4.2μ΄", "width": 800, "height": 480, "num_frames": 105},
|
264 |
+
{"label": "[16:9] 736x480, 4.5μ΄", "width": 736, "height": 480, "num_frames": 113},
|
265 |
+
{"label": "[3:2] 704x480, 4.8μ΄", "width": 704, "height": 480, "num_frames": 121},
|
266 |
+
{"label": "[16:9] 704x448, 5.2μ΄", "width": 704, "height": 448, "num_frames": 129},
|
267 |
+
{"label": "[16:9] 672x448, 5.5μ΄", "width": 672, "height": 448, "num_frames": 137},
|
268 |
+
{"label": "[16:9] 640x416, 6.1μ΄", "width": 640, "height": 416, "num_frames": 153},
|
269 |
+
{"label": "[16:9] 672x384, 6.4μ΄", "width": 672, "height": 384, "num_frames": 161},
|
270 |
+
{"label": "[16:9] 640x384, 6.8μ΄", "width": 640, "height": 384, "num_frames": 169},
|
271 |
+
{"label": "[16:9] 608x384, 7.1μ΄", "width": 608, "height": 384, "num_frames": 177},
|
272 |
+
{"label": "[16:9] 576x384, 7.4μ΄", "width": 576, "height": 384, "num_frames": 185},
|
273 |
+
{"label": "[16:9] 608x352, 7.7μ΄", "width": 608, "height": 352, "num_frames": 193},
|
274 |
+
{"label": "[16:9] 576x352, 8.0μ΄", "width": 576, "height": 352, "num_frames": 201},
|
275 |
+
{"label": "[16:9] 544x352, 8.4μ΄", "width": 544, "height": 352, "num_frames": 209},
|
276 |
+
{"label": "[3:2] 512x352, 9.3μ΄", "width": 512, "height": 352, "num_frames": 233},
|
277 |
+
{"label": "[16:9] 544x320, 9.6μ΄", "width": 544, "height": 320, "num_frames": 241},
|
278 |
+
{"label": "[16:9] 512x320, 10.3μ΄", "width": 512, "height": 320, "num_frames": 257},
|
279 |
]
|
280 |
|
281 |
def preset_changed(preset):
|
282 |
+
selected = next(item for item in preset_options if item["label"] == preset)
|
283 |
+
return [
|
284 |
+
selected["height"],
|
285 |
+
selected["width"],
|
286 |
+
selected["num_frames"],
|
287 |
+
gr.update(visible=False),
|
288 |
+
gr.update(visible=False),
|
289 |
+
gr.update(visible=False),
|
290 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
def generate_video_from_text(
|
293 |
prompt="",
|
|
|
297 |
seed=171198,
|
298 |
num_inference_steps=41,
|
299 |
guidance_scale=4,
|
300 |
+
height=320,
|
301 |
+
width=512,
|
302 |
num_frames=257,
|
303 |
progress=gr.Progress(),
|
304 |
):
|
|
|
376 |
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
|
377 |
frame_rate=25,
|
378 |
seed=171198,
|
379 |
+
num_inference_steps=41,
|
380 |
guidance_scale=4,
|
381 |
+
height=320,
|
382 |
+
width=512,
|
383 |
+
num_frames=257,
|
384 |
progress=gr.Progress(),
|
385 |
):
|
386 |
print("Height: ", height)
|
|
|
473 |
minimum=1,
|
474 |
maximum=50,
|
475 |
step=1,
|
476 |
+
value=41,
|
477 |
visible=False
|
478 |
)
|
479 |
guidance_scale = gr.Slider(
|
|
|
489 |
minimum=256,
|
490 |
maximum=1024,
|
491 |
step=64,
|
492 |
+
value=320,
|
493 |
visible=False,
|
494 |
)
|
495 |
width_slider = gr.Slider(
|
|
|
497 |
minimum=256,
|
498 |
maximum=1024,
|
499 |
step=64,
|
500 |
+
value=512,
|
501 |
visible=False,
|
502 |
)
|
503 |
num_frames_slider = gr.Slider(
|
|
|
505 |
minimum=1,
|
506 |
maximum=200,
|
507 |
step=1,
|
508 |
+
value=257,
|
509 |
visible=False,
|
510 |
)
|
511 |
|
|
|
518 |
num_frames_slider,
|
519 |
]
|
520 |
|
521 |
+
system_prompt_scenario = """λΉμ μ μμ μ€ν¬λ¦½νΈμ λ§λ λ°°κ²½ μμμ μμ±νκΈ° μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
|
522 |
+
μ£Όμ΄μ§ μ€ν¬λ¦½νΈμ λΆμκΈ°μ λ§₯λ½μ μκ°μ λ°°κ²½μΌλ‘ νννλ, λ€μ μμΉμ λ°λμ μ€μνμΈμ:
|
523 |
+
|
524 |
+
1. μ νμ΄λ μλΉμ€λ₯Ό μ§μ μ μΌλ‘ λ¬μ¬νμ§ λ§ κ²
|
525 |
+
2. μ€ν¬λ¦½νΈμ κ°μ±κ³Ό ν€μ€λ§€λλ₯Ό νννλ λ°°κ²½ μμμ μ§μ€ν κ²
|
526 |
+
3. 5κ° μΉμ
μ΄ νλμ μ΄μΌκΈ°μ²λΌ μμ°μ€λ½κ² μ°κ²°λλλ‘ ν κ²
|
527 |
+
4. μΆμμ μ΄κ³ μμ μ μΈ μκ° ννμ νμ©ν κ²
|
528 |
+
|
529 |
+
κ° μΉμ
λ³ ν둬ννΈ μμ± κ°μ΄λ:
|
530 |
+
1. λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬
|
531 |
+
2. λ¬Έμ μ κΈ°: κΈ΄μ₯κ°μ΄λ κ°λ±μ μμνλ λΆμκΈ° μλ λ°°κ²½
|
532 |
+
3. ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°μ ν€μ λ°°κ²½ μ ν
|
533 |
+
4. λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½
|
534 |
+
5. κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½
|
535 |
+
|
536 |
+
λͺ¨λ μΉμ
μ΄ μΌκ΄λ μ€νμΌκ³Ό ν€μ μ μ§νλ©΄μλ μμ°μ€λ½κ² μ΄μ΄μ§λλ‘ κ΅¬μ±νμΈμ.
|
537 |
+
|
538 |
+
κ° μΉμ
μ ν둬ννΈ μμ±μ λ°λμ λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
|
539 |
+
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
|
540 |
+
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
|
541 |
+
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
|
542 |
+
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
|
543 |
+
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
|
544 |
+
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
|
545 |
+
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
|
546 |
+
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
|
547 |
+
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
|
548 |
+
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ.
|
549 |
+
|
550 |
+
"""
|
551 |
+
|
552 |
+
|
553 |
+
def analyze_scenario(scenario):
|
554 |
+
"""μλ리μ€λ₯Ό λΆμνμ¬ λ°°κ²½ μμμ© ν둬ννΈ μμ±"""
|
555 |
+
messages = [
|
556 |
+
{"role": "system", "content": system_prompt_scenario},
|
557 |
+
{"role": "user", "content": f"""
|
558 |
+
λ€μ μ€ν¬λ¦½νΈμ λΆμκΈ°μ κ°μ±μ ννν μ μλ λ°°κ²½ μμ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ:
|
559 |
+
|
560 |
+
{scenario}
|
561 |
+
|
562 |
+
κ° μΉμ
λ³λ‘ μ§μ μ μΈ μ ν λ¬μ¬λ νΌνκ³ , μ€ν¬λ¦½νΈμ κ°μ±μ νννλ λ°°κ²½ μμμ μ§μ€ν΄μ£ΌμΈμ."""},
|
563 |
+
]
|
564 |
+
|
565 |
+
try:
|
566 |
+
response = client.chat.completions.create(
|
567 |
+
model="gpt-4-1106-preview",
|
568 |
+
messages=messages,
|
569 |
+
max_tokens=2000,
|
570 |
+
)
|
571 |
+
prompts = response.choices[0].message.content.strip().split("\n\n")
|
572 |
+
|
573 |
+
# ν둬ννΈ μ²λ¦¬ λ‘μ§μ λμΌ
|
574 |
+
section_prompts = []
|
575 |
+
current_section = ""
|
576 |
+
for line in prompts:
|
577 |
+
if line.strip():
|
578 |
+
if any(section in line for section in ["1.", "2.", "3.", "4.", "5."]):
|
579 |
+
if current_section:
|
580 |
+
section_prompts.append(current_section)
|
581 |
+
current_section = line
|
582 |
+
else:
|
583 |
+
current_section += "\n" + line
|
584 |
+
if current_section:
|
585 |
+
section_prompts.append(current_section)
|
586 |
+
|
587 |
+
while len(section_prompts) < 5:
|
588 |
+
section_prompts.append("μΆκ° μΉμ
μ΄ νμν©λλ€.")
|
589 |
+
return section_prompts[:5]
|
590 |
+
except Exception as e:
|
591 |
+
print(f"Error during scenario analysis: {e}")
|
592 |
+
return ["Error occurred during analysis"] * 5
|
593 |
+
|
594 |
+
def generate_section_video(prompt, preset, section_number=1, base_seed=171198, progress=gr.Progress()):
|
595 |
+
"""κ° μΉμ
μ λΉλμ€ μμ± - μλ¬ μ²λ¦¬ μΆκ°"""
|
596 |
+
try:
|
597 |
+
if not prompt or len(prompt.strip()) < 50:
|
598 |
+
raise gr.Error("ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€.")
|
599 |
+
|
600 |
+
selected = next(item for item in preset_options if item["label"] == preset)
|
601 |
+
section_seed = base_seed + section_number
|
602 |
+
|
603 |
+
return generate_video_from_text(
|
604 |
+
prompt=prompt,
|
605 |
+
height=selected["height"],
|
606 |
+
width=selected["width"],
|
607 |
+
num_frames=selected["num_frames"],
|
608 |
+
seed=section_seed,
|
609 |
+
progress=progress
|
610 |
+
)
|
611 |
+
except Exception as e:
|
612 |
+
print(f"Error in section {section_number}: {e}")
|
613 |
+
raise gr.Error(f"μΉμ
{section_number} μμ± μ€ μ€λ₯: {str(e)}")
|
614 |
+
|
615 |
+
|
616 |
+
# κ°λ³ μΉμ
ν둬ννΈ μμ± ν¨μ μΆκ°
|
617 |
+
def generate_single_section_prompt(scenario, section_number):
|
618 |
+
"""κ°λ³ μΉμ
μ λν ν둬ννΈ μμ±"""
|
619 |
+
section_descriptions = {
|
620 |
+
1: "λ°°κ²½ λ° νμμ±: μ£Όμ μ μ λ°μ μΈ λΆμκΈ°λ₯Ό νννλ λ°°κ²½ μ¬",
|
621 |
+
2: "ν₯λ―Έ μ λ°: ν₯λ―Έλ₯Ό μ λ°νκ³ κΈ°λκ°μ μ¦νμν€λ λ°°κ²½",
|
622 |
+
3: "ν΄κ²°μ±
μ μ: ν¬λ§μ μ΄κ³ λ°οΏ½οΏ½οΏ½ ν€μ λ°°κ²½ μ ν",
|
623 |
+
4: "λ³Έλ‘ : μμ κ° μκ³ μ λ’°λλ₯Ό λμ΄λ λ°°κ²½",
|
624 |
+
5: "κ²°λ‘ : μν©νΈ μλ λ§λ¬΄λ¦¬λ₯Ό μν μλμ μΈ λ°°κ²½"
|
625 |
+
}
|
626 |
+
|
627 |
+
messages = [
|
628 |
+
{"role": "system", "content": system_prompt_scenario},
|
629 |
+
{"role": "user", "content": f"""
|
630 |
+
λ€μ μ€ν¬λ¦½νΈμ {section_number}λ²μ§Έ μΉμ
({section_descriptions[section_number]})μ λν
|
631 |
+
λ°°κ²½ μμ ν둬ννΈλ§μ μμ±ν΄μ£ΌμΈμ:
|
632 |
+
|
633 |
+
{scenario}
|
634 |
+
|
635 |
+
μ§μ μ μΈ μ ν λ¬μ¬λ νΌνκ³ , μ€ν¬λ¦½νΈμ μ£Όμ μ κ°μ±μ νννλ ν΅μ¬ ν€μλλ₯Ό λ°μν λ°°κ²½ μμμ μ§μ€ν΄μ£ΌμΈμ."""}
|
636 |
+
]
|
637 |
+
|
638 |
+
try:
|
639 |
+
response = client.chat.completions.create(
|
640 |
+
model="gpt-4-1106-preview",
|
641 |
+
messages=messages,
|
642 |
+
max_tokens=500,
|
643 |
+
)
|
644 |
+
return response.choices[0].message.content.strip()
|
645 |
+
except Exception as e:
|
646 |
+
print(f"Error during prompt generation: {e}")
|
647 |
+
return "Error occurred during prompt generation"
|
648 |
+
|
649 |
+
|
650 |
+
# λΉλμ€ κ²°ν© ν¨μ μΆκ°
|
651 |
+
def combine_videos(video_paths, output_path):
|
652 |
+
"""μ¬λ¬ λΉλμ€λ₯Ό νλλ‘ κ²°ν©"""
|
653 |
+
if not all(video_paths):
|
654 |
+
raise gr.Error("λͺ¨λ μΉμ
μ μμμ΄ μμ±λμ΄μΌ ν©λλ€.")
|
655 |
+
|
656 |
+
try:
|
657 |
+
# 첫 λ²μ§Έ λΉλμ€μ μμ± κ°μ Έμ€κΈ°
|
658 |
+
cap = cv2.VideoCapture(video_paths[0])
|
659 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
660 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
661 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
662 |
+
cap.release()
|
663 |
+
|
664 |
+
# μΆλ ₯ λΉλμ€ μ€μ
|
665 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
666 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
667 |
+
|
668 |
+
# κ° λΉλμ€ μμ°¨μ μΌλ‘ κ²°ν©
|
669 |
+
for video_path in video_paths:
|
670 |
+
if video_path and os.path.exists(video_path):
|
671 |
+
cap = cv2.VideoCapture(video_path)
|
672 |
+
while True:
|
673 |
+
ret, frame = cap.read()
|
674 |
+
if not ret:
|
675 |
+
break
|
676 |
+
out.write(frame)
|
677 |
+
cap.release()
|
678 |
+
|
679 |
+
out.release()
|
680 |
+
return output_path
|
681 |
+
except Exception as e:
|
682 |
+
raise gr.Error(f"λΉλμ€ κ²°ν© μ€ μ€λ₯ λ°μ: {e}")
|
683 |
+
|
684 |
+
def merge_section_videos(section1, section2, section3, section4, section5):
|
685 |
+
"""μΉμ
λΉλμ€λ€μ νλλ‘ κ²°ν©"""
|
686 |
+
videos = [section1, section2, section3, section4, section5]
|
687 |
+
|
688 |
+
if not all(videos):
|
689 |
+
raise gr.Error("λͺ¨λ μΉμ
μ μμμ΄ λ¨Όμ μμ±λμ΄μΌ ν©λλ€.")
|
690 |
+
|
691 |
+
output_path = tempfile.mktemp(suffix=".mp4")
|
692 |
+
return combine_videos(videos, output_path)
|
693 |
+
|
694 |
+
|
695 |
# Gradio Interface Definition
|
696 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
697 |
with gr.Tabs():
|
|
|
719 |
visible=False
|
720 |
)
|
721 |
|
|
|
|
|
|
|
|
|
|
|
722 |
txt2vid_preset = gr.Dropdown(
|
723 |
choices=[p["label"] for p in preset_options],
|
724 |
+
value="[16:9] 512x320, 10.3μ΄",
|
725 |
label="Step 2: ν΄μλ ν리μ
μ ν",
|
726 |
)
|
727 |
|
|
|
772 |
visible=False
|
773 |
)
|
774 |
|
|
|
|
|
|
|
|
|
|
|
775 |
img2vid_preset = gr.Dropdown(
|
776 |
choices=[p["label"] for p in preset_options],
|
777 |
+
value="[16:9] 512x320, 10.3μ΄",
|
778 |
label="Step 3: ν΄μλ ν리μ
μ ν",
|
779 |
)
|
780 |
|
|
|
797 |
with gr.Column():
|
798 |
img2vid_output = gr.Video(label="μμ±λ λΉλμ€")
|
799 |
|
800 |
+
|
801 |
+
# Scenario to Video Tab (Modified)
|
802 |
+
with gr.TabItem("μλ리μ€λ‘ λΉλμ€ λ§λ€κΈ°(μνΌ)"):
|
803 |
+
with gr.Row():
|
804 |
+
with gr.Column(scale=1):
|
805 |
+
scenario_input = gr.Textbox(
|
806 |
+
label="μμ μ€ν¬λ¦½νΈ μ
λ ₯",
|
807 |
+
placeholder="μ 체 μλ리μ€λ₯Ό μ
λ ₯νμΈμ...",
|
808 |
+
lines=10
|
809 |
+
)
|
810 |
+
scenario_preset = gr.Dropdown(
|
811 |
+
choices=[p["label"] for p in preset_options],
|
812 |
+
value="[16:9] 512x320, 10.3μ΄",
|
813 |
+
label="νλ©΄ ν¬κΈ° μ ν"
|
814 |
+
)
|
815 |
+
analyze_btn = gr.Button("μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±", variant="primary")
|
816 |
+
|
817 |
+
with gr.Column(scale=2):
|
818 |
+
with gr.Row():
|
819 |
+
# μΉμ
1
|
820 |
+
with gr.Column():
|
821 |
+
section1_prompt = gr.Textbox(
|
822 |
+
label="1. λ°°κ²½ λ° νμμ±",
|
823 |
+
lines=4
|
824 |
+
)
|
825 |
+
with gr.Row():
|
826 |
+
section1_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
827 |
+
section1_generate = gr.Button("π μμ μμ±")
|
828 |
+
section1_video = gr.Video(label="μΉμ
1 μμ")
|
829 |
+
|
830 |
+
# μΉμ
2
|
831 |
+
with gr.Column():
|
832 |
+
section2_prompt = gr.Textbox(
|
833 |
+
label="2. ν₯λ―Έ μ λ°",
|
834 |
+
lines=4
|
835 |
+
)
|
836 |
+
with gr.Row():
|
837 |
+
section2_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
838 |
+
section2_generate = gr.Button("π μμ μμ±")
|
839 |
+
section2_video = gr.Video(label="μΉμ
2 μμ")
|
840 |
+
|
841 |
+
with gr.Row():
|
842 |
+
# μΉμ
3
|
843 |
+
with gr.Column():
|
844 |
+
section3_prompt = gr.Textbox(
|
845 |
+
label="3. ν΄κ²°μ±
μ μ",
|
846 |
+
lines=4
|
847 |
+
)
|
848 |
+
with gr.Row():
|
849 |
+
section3_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
850 |
+
section3_generate = gr.Button("π μμ μμ±")
|
851 |
+
section3_video = gr.Video(label="μΉμ
3 μμ")
|
852 |
+
|
853 |
+
# μΉμ
4
|
854 |
+
with gr.Column():
|
855 |
+
section4_prompt = gr.Textbox(
|
856 |
+
label="4. λ³Έλ‘ ",
|
857 |
+
lines=4
|
858 |
+
)
|
859 |
+
with gr.Row():
|
860 |
+
section4_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
861 |
+
section4_generate = gr.Button("π μμ μμ±")
|
862 |
+
section4_video = gr.Video(label="μΉμ
4 μμ")
|
863 |
+
|
864 |
+
with gr.Row():
|
865 |
+
# μΉμ
5
|
866 |
+
with gr.Column():
|
867 |
+
section5_prompt = gr.Textbox(
|
868 |
+
label="5. κ²°λ‘ λ° κ°μ‘°",
|
869 |
+
lines=4
|
870 |
+
)
|
871 |
+
with gr.Row():
|
872 |
+
section5_regenerate = gr.Button("π ν둬ννΈ μμ±")
|
873 |
+
section5_generate = gr.Button("π μμ μμ±")
|
874 |
+
section5_video = gr.Video(label="μΉμ
5 μμ")
|
875 |
+
|
876 |
+
|
877 |
+
|
878 |
+
# ν΅ν© μμ μΉμ
μΆκ°
|
879 |
+
with gr.Row():
|
880 |
+
with gr.Column(scale=1):
|
881 |
+
# κΈ°μ‘΄μ scenario_inputκ³Ό analyze_btn μ μ§
|
882 |
+
merge_videos_btn = gr.Button("ν΅ν© μμ μμ±", variant="primary", size="lg")
|
883 |
+
|
884 |
+
with gr.Column(scale=2):
|
885 |
+
# κΈ°μ‘΄μ μΉμ
1-5 μ μ§
|
886 |
+
|
887 |
+
# ν΅ν© μμ μΆλ ₯ μΉμ
μΆκ°
|
888 |
+
with gr.Row():
|
889 |
+
merged_video_output = gr.Video(label="ν΅ν© μμ")
|
890 |
+
|
891 |
+
|
892 |
+
|
893 |
+
|
894 |
+
# Event handlers
|
895 |
txt2vid_preset.change(
|
896 |
fn=preset_changed,
|
897 |
inputs=[txt2vid_preset],
|
|
|
916 |
txt2vid_enhance_toggle,
|
917 |
txt2vid_negative_prompt,
|
918 |
txt2vid_frame_rate,
|
919 |
+
*txt2vid_advanced[:3],
|
920 |
txt2vid_current_height,
|
921 |
txt2vid_current_width,
|
922 |
txt2vid_current_num_frames,
|
|
|
952 |
img2vid_enhance_toggle,
|
953 |
img2vid_negative_prompt,
|
954 |
img2vid_frame_rate,
|
955 |
+
*img2vid_advanced[:3],
|
956 |
img2vid_current_height,
|
957 |
img2vid_current_width,
|
958 |
img2vid_current_num_frames,
|
|
|
963 |
queue=True,
|
964 |
)
|
965 |
|
966 |
+
# Scenario tab event handlers
|
967 |
+
analyze_btn.click(
|
968 |
+
fn=analyze_scenario,
|
969 |
+
inputs=[scenario_input],
|
970 |
+
outputs=[
|
971 |
+
section1_prompt, section2_prompt, section3_prompt,
|
972 |
+
section4_prompt, section5_prompt
|
973 |
+
]
|
974 |
+
)
|
975 |
+
|
976 |
+
# μΉμ
μμ± μ΄λ²€νΈ νΈλ€λ¬
|
977 |
+
section1_generate.click(
|
978 |
+
fn=generate_section_video,
|
979 |
+
inputs=[section1_prompt, scenario_preset],
|
980 |
+
outputs=section1_video,
|
981 |
+
api_name=f"generate_section1"
|
982 |
+
)
|
983 |
+
|
984 |
+
section2_generate.click(
|
985 |
+
fn=lambda p, pr: generate_section_video(p, pr, 2),
|
986 |
+
inputs=[section2_prompt, scenario_preset],
|
987 |
+
outputs=section2_video,
|
988 |
+
api_name=f"generate_section2"
|
989 |
+
)
|
990 |
+
|
991 |
+
section3_generate.click(
|
992 |
+
fn=lambda p, pr: generate_section_video(p, pr, 3),
|
993 |
+
inputs=[section3_prompt, scenario_preset],
|
994 |
+
outputs=section3_video,
|
995 |
+
api_name=f"generate_section3"
|
996 |
+
)
|
997 |
+
|
998 |
+
section4_generate.click(
|
999 |
+
fn=lambda p, pr: generate_section_video(p, pr, 4),
|
1000 |
+
inputs=[section4_prompt, scenario_preset],
|
1001 |
+
outputs=section4_video,
|
1002 |
+
api_name=f"generate_section4"
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
section5_generate.click(
|
1006 |
+
fn=lambda p, pr: generate_section_video(p, pr, 5),
|
1007 |
+
inputs=[section5_prompt, scenario_preset],
|
1008 |
+
outputs=section5_video,
|
1009 |
+
api_name=f"generate_section5"
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
|
1013 |
+
|
1014 |
+
# μΉμ
μμ± μ΄λ²€νΈ νΈλ€λ¬
|
1015 |
+
section1_generate.click(
|
1016 |
+
fn=lambda p, pr: generate_section_video(p, pr, 1),
|
1017 |
+
inputs=[section1_prompt, scenario_preset],
|
1018 |
+
outputs=section1_video
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
section2_generate.click(
|
1022 |
+
fn=lambda p, pr: generate_section_video(p, pr, 2),
|
1023 |
+
inputs=[section2_prompt, scenario_preset],
|
1024 |
+
outputs=section2_video
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
section3_generate.click(
|
1028 |
+
fn=lambda p, pr: generate_section_video(p, pr, 3),
|
1029 |
+
inputs=[section3_prompt, scenario_preset],
|
1030 |
+
outputs=section3_video
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
section4_generate.click(
|
1034 |
+
fn=lambda p, pr: generate_section_video(p, pr, 4),
|
1035 |
+
inputs=[section4_prompt, scenario_preset],
|
1036 |
+
outputs=section4_video
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
section5_generate.click(
|
1040 |
+
fn=lambda p, pr: generate_section_video(p, pr, 5),
|
1041 |
+
inputs=[section5_prompt, scenario_preset],
|
1042 |
+
outputs=section5_video
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
|
1046 |
+
# μ΄λ²€νΈ νΈλ€λ¬ μΆκ°
|
1047 |
+
merge_videos_btn.click(
|
1048 |
+
fn=merge_section_videos,
|
1049 |
+
inputs=[
|
1050 |
+
section1_video,
|
1051 |
+
section2_video,
|
1052 |
+
section3_video,
|
1053 |
+
section4_video,
|
1054 |
+
section5_video
|
1055 |
+
],
|
1056 |
+
outputs=merged_video_output
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
|
1060 |
if __name__ == "__main__":
|
1061 |
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
1062 |
share=True, show_api=False
|