deepseek_r1_API / app.py
levalencia's picture
vision and text
d6bbfd2
raw
history blame
7.03 kB
import streamlit as st
from huggingface_hub import InferenceClient
import os
from typing import Iterator
from PIL import Image
import pytesseract
from PyPDF2 import PdfReader
import base64
from together import Together
API_KEY = os.getenv("TOGETHER_API_KEY")
if not API_KEY:
raise ValueError("API key is missing! Make sure TOGETHER_API_KEY is set in the Secrets.")
# Initialize the client with Together AI provider
@st.cache_resource
def get_client():
#return InferenceClient(
# provider="together",
# api_key=API_KEY
#)
return Together(api_key=API_KEY) # Use Together.ai's official client
def process_file(file) -> str:
"""Process uploaded file and return its content"""
if file is None:
return ""
try:
# Handle PDF files
if file.type == "application/pdf":
text = ""
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
# Handle image files
elif file.type.startswith("image/"):
return base64.b64encode(file.getvalue()).decode("utf-8")
# Handle text files
else:
return file.getvalue().decode('utf-8')
except Exception as e:
return f"Error processing file: {str(e)}"
def generate_response(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
files=None
) -> Iterator[str]:
client = get_client()
has_images = False
content_blocks = []
image_content = None # To store image data
image_mime_type = None # To store MIME type
if files:
for file in files:
content = process_file(file)
if file.type.startswith("image/"):
has_images = True
image_content = content # Already base64 encoded
image_mime_type = file.type # Store MIME type
else:
content_blocks.append({
"type": "text",
"text": f"File content:\n{content}"
})
# Build messages
messages = [{"role": "system", "content": system_message}]
# Add history
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
try:
if has_images:
# Vision model request
vision_messages = [{
"role": "user",
"content": [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:{image_mime_type};base64,{image_content}",
},
},
]
}]
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
messages=vision_messages,
stream=True,
)
else:
# Text-only model request
current_message = {
"role": "user",
"content": [{"type": "text", "text": message}] + content_blocks
}
messages.append(current_message)
stream = client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True
)
# Stream response
for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
except Exception as e:
yield f"Error: {str(e)}"
def main():
st.set_page_config(page_title="DeepSeek Chat", page_icon="💭", layout="wide")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
st.title("DeepSeek Chat with File Upload")
st.markdown("Chat with DeepSeek AI model. You can optionally upload files for the model to analyze.")
# Sidebar for parameters
with st.sidebar:
st.header("Settings")
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot.",
height=100
)
max_tokens = st.slider(
"Max Tokens",
min_value=1,
max_value=8192,
value=8192,
step=1
)
temperature = st.slider(
"Temperature",
min_value=0.1,
max_value=4.0,
value=0.0,
step=0.1
)
top_p = st.slider(
"Top-p (nucleus sampling)",
min_value=0.1,
max_value=1.0,
value=0.95,
step=0.05
)
uploaded_file = st.file_uploader(
"Upload File (optional)",
type=['txt', 'py', 'md', 'swift', 'java', 'js', 'ts', 'rb', 'go',
'php', 'c', 'cpp', 'h', 'hpp', 'cs', 'html', 'css', 'kt', 'svelte',
'pdf', 'png', 'jpg', 'jpeg'], # Added file types
accept_multiple_files=True
)
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# Chat input
if prompt := st.chat_input("What would you like to know?"):
# Display user message
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Generate and display assistant response
with st.chat_message("assistant"):
response_placeholder = st.empty()
full_response = ""
# Get message history for context
history = [(msg["content"], next_msg["content"])
for msg, next_msg in zip(st.session_state.messages[::2], st.session_state.messages[1::2])]
# Stream the response
for response_chunk in generate_response(
prompt,
history,
system_message,
max_tokens,
temperature,
top_p,
uploaded_file
):
full_response += response_chunk
print(full_response)
response_placeholder.markdown(full_response + "▌")
response_placeholder.markdown(full_response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
if __name__ == "__main__":
main()