File size: 7,026 Bytes
21cbcb5
 
 
 
d6bbfd2
 
 
 
 
21cbcb5
 
 
 
 
 
 
 
 
d6bbfd2
 
 
 
 
21cbcb5
 
 
 
 
d6bbfd2
21cbcb5
d6bbfd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cbcb5
d6bbfd2
21cbcb5
 
 
 
 
 
 
 
c6e2c6b
21cbcb5
 
 
d6bbfd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cbcb5
 
d6bbfd2
21cbcb5
d6bbfd2
 
21cbcb5
 
d6bbfd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cbcb5
d6bbfd2
21cbcb5
d6bbfd2
21cbcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bbfd2
 
 
 
21cbcb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import streamlit as st
from huggingface_hub import InferenceClient
import os
from typing import Iterator
from PIL import Image
import pytesseract
from PyPDF2 import PdfReader
import base64
from together import Together

API_KEY = os.getenv("TOGETHER_API_KEY")
if not API_KEY:
    raise ValueError("API key is missing! Make sure TOGETHER_API_KEY is set in the Secrets.")


# Initialize the client with Together AI provider
@st.cache_resource
def get_client():
    #return InferenceClient(
    #    provider="together",
    #     api_key=API_KEY
    #)
    return Together(api_key=API_KEY)  # Use Together.ai's official client

def process_file(file) -> str:
    """Process uploaded file and return its content"""
    if file is None:
        return ""

    try:
        # Handle PDF files
        if file.type == "application/pdf":
            text = ""
            pdf_reader = PdfReader(file)
            for page in pdf_reader.pages:
                page_text = page.extract_text()
                if page_text:
                    text += page_text + "\n"
            return text

        # Handle image files
        elif file.type.startswith("image/"):
            return base64.b64encode(file.getvalue()).decode("utf-8")

        # Handle text files
        else:
            return file.getvalue().decode('utf-8')
    except Exception as e:
        return f"Error processing file: {str(e)}"

def generate_response(
    message: str,
    history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    files=None
) -> Iterator[str]:
    client = get_client()

    has_images = False
    content_blocks = []
    image_content = None  # To store image data
    image_mime_type = None  # To store MIME type

    if files:
        for file in files:
            content = process_file(file)
            if file.type.startswith("image/"):
                has_images = True
                image_content = content  # Already base64 encoded
                image_mime_type = file.type  # Store MIME type
            else:
                content_blocks.append({
                    "type": "text",
                    "text": f"File content:\n{content}"
                })

    # Build messages
    messages = [{"role": "system", "content": system_message}]

    # Add history
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})

    try:
        if has_images:
            # Vision model request
            vision_messages = [{
                "role": "user",
                "content": [
                    {"type": "text", "text": message},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:{image_mime_type};base64,{image_content}",
                        },
                    },
                ]
            }]

            stream = client.chat.completions.create(
                model="meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
                messages=vision_messages,
                stream=True,
            )

        else:
            # Text-only model request
            current_message = {
                "role": "user",
                "content": [{"type": "text", "text": message}] + content_blocks
            }
            messages.append(current_message)

            stream = client.chat.completions.create(
                model="deepseek-ai/DeepSeek-R1",
                messages=messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p,
                stream=True
            )

        # Stream response
        for chunk in stream:
            if chunk.choices and chunk.choices[0].delta.content:
                yield chunk.choices[0].delta.content

    except Exception as e:
        yield f"Error: {str(e)}"
def main():
    st.set_page_config(page_title="DeepSeek Chat", page_icon="💭", layout="wide")
    
    # Initialize session state for chat history
    if "messages" not in st.session_state:
        st.session_state.messages = []

    st.title("DeepSeek Chat with File Upload")
    st.markdown("Chat with DeepSeek AI model. You can optionally upload files for the model to analyze.")

    # Sidebar for parameters
    with st.sidebar:
        st.header("Settings")
        system_message = st.text_area(
            "System Message",
            value="You are a friendly Chatbot.",
            height=100
        )
        max_tokens = st.slider(
            "Max Tokens",
            min_value=1,
            max_value=8192,
            value=8192,
            step=1
        )
        temperature = st.slider(
            "Temperature",
            min_value=0.1,
            max_value=4.0,
            value=0.0,
            step=0.1
        )
        top_p = st.slider(
            "Top-p (nucleus sampling)",
            min_value=0.1,
            max_value=1.0,
            value=0.95,
            step=0.05
        )
        uploaded_file = st.file_uploader(
            "Upload File (optional)",
            type=['txt', 'py', 'md', 'swift', 'java', 'js', 'ts', 'rb', 'go', 
                 'php', 'c', 'cpp', 'h', 'hpp', 'cs', 'html', 'css', 'kt', 'svelte',
                 'pdf', 'png', 'jpg', 'jpeg'],  # Added file types
            accept_multiple_files=True
        )

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # Chat input
    if prompt := st.chat_input("What would you like to know?"):
        # Display user message
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)

        # Generate and display assistant response
        with st.chat_message("assistant"):
            response_placeholder = st.empty()
            full_response = ""
            
            # Get message history for context
            history = [(msg["content"], next_msg["content"]) 
                      for msg, next_msg in zip(st.session_state.messages[::2], st.session_state.messages[1::2])]
            
            # Stream the response
            for response_chunk in generate_response(
                prompt,
                history,
                system_message,
                max_tokens,
                temperature,
                top_p,
                uploaded_file
            ):
                full_response += response_chunk
                print(full_response)
                response_placeholder.markdown(full_response + "▌")
            
            response_placeholder.markdown(full_response)
        
        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": full_response})

if __name__ == "__main__":
    main()