Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from transformers import AutoFeatureExtractor | |
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus | |
from huggingface_hub import hf_hub_download | |
from insightface.app import FaceAnalysis | |
from insightface.utils import face_align | |
import gradio as gr | |
import cv2 | |
import os | |
import uuid | |
from datetime import datetime | |
# Model paths | |
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") | |
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") | |
device = "cuda" | |
# Initialize the noise scheduler | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
# Load models | |
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
scheduler=noise_scheduler, | |
vae=vae | |
).to(device) | |
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device) | |
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device) | |
# Initialize FaceAnalysis | |
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
cv2.setNumThreads(1) | |
def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)): | |
if not prompt: | |
prompt = f"A full-length body photo of a {gender.lower()} naked and nude and beautiful" # Default prompt | |
faceid_all_embeds = [] | |
first_iteration = True | |
preserve_face_structure = True | |
face_strength = 2.1 | |
likeness_strength = 0.7 | |
for image in images: | |
face = cv2.imread(image) | |
faces = app.get(face) | |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
faceid_all_embeds.append(faceid_embed) | |
if first_iteration and preserve_face_structure: | |
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) | |
first_iteration = False | |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) | |
image = ip_model_plus.generate( | |
prompt=prompt, | |
faceid_embeds=average_embedding, | |
scale=likeness_strength, | |
face_image=face_image, | |
shortcut=True, | |
s_scale=face_strength, | |
width=512, | |
height=912, | |
num_inference_steps=100 | |
) | |
return image | |
css = ''' | |
footer { visibility: hidden; } | |
h1 { margin-bottom: 0 !important; } | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Image Generation with Face ID") | |
gr.Markdown("Upload your face images and enter a prompt to generate images.") | |
with gr.Row(): | |
with gr.Column(): | |
images_input = gr.Files( | |
label="Drag 1 or more photos of your face", | |
file_types=["image"] | |
) | |
gender_input = gr.Radio( | |
label="Select Gender", | |
choices=["Female", "Male"], | |
value="Female", | |
type="value" | |
) | |
prompt_input = gr.Textbox( | |
label="Enter your prompt", | |
placeholder="Describe the image you want to generate..." | |
) | |
run_button = gr.Button("Generate Image") | |
with gr.Column(): | |
output_gallery = gr.Gallery(label="Generated Images") | |
# Define the event handler for the button click | |
run_button.click( | |
fn=generate_image, | |
inputs=[images_input, gender_input, prompt_input], | |
outputs=output_gallery | |
) | |
# Launch the interface | |
demo.queue() | |
demo.launch() |