File size: 4,074 Bytes
f0e13d9
 
 
 
 
 
 
 
 
 
4c9a6f0
036dfc6
4c9a6f0
 
f0e13d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
036dfc6
f0e13d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9a6f0
f0e13d9
 
 
 
 
 
 
 
 
 
 
4c9a6f0
f0e13d9
 
4c9a6f0
f0e13d9
 
 
 
 
4c9a6f0
 
f0e13d9
036dfc6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
import os
import uuid
from datetime import datetime

# Model paths
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")

device = "cuda"

# Initialize the noise scheduler
noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

# Load models
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae
).to(device)

ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_plus_ckpt, device)

# Initialize FaceAnalysis
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

cv2.setNumThreads(1)

@spaces.GPU(enable_queue=True)
def generate_image(images, gender, prompt, progress=gr.Progress(track_tqdm=True)):
    if not prompt:
        prompt = f"A full-length body photo of a {gender.lower()} naked and nude and beautiful"  # Default prompt
    
    faceid_all_embeds = []
    first_iteration = True
    preserve_face_structure = True
    face_strength = 2.1
    likeness_strength = 0.7

    for image in images:
        face = cv2.imread(image)
        faces = app.get(face)
        faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
        faceid_all_embeds.append(faceid_embed)

        if first_iteration and preserve_face_structure:
            face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
            first_iteration = False

    average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)

    image = ip_model_plus.generate(
        prompt=prompt,  
        faceid_embeds=average_embedding,
        scale=likeness_strength, 
        face_image=face_image, 
        shortcut=True, 
        s_scale=face_strength, 
        width=512, 
        height=912, 
        num_inference_steps=100
    )
    return image

css = '''
footer { visibility: hidden; }
h1 { margin-bottom: 0 !important; }
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Image Generation with Face ID")
    gr.Markdown("Upload your face images and enter a prompt to generate images.")

    with gr.Row():
        with gr.Column():
            images_input = gr.Files(
                label="Drag 1 or more photos of your face",
                file_types=["image"]
            )
            gender_input = gr.Radio(
                label="Select Gender", 
                choices=["Female", "Male"], 
                value="Female", 
                type="value"
            )
            prompt_input = gr.Textbox(
                label="Enter your prompt",
                placeholder="Describe the image you want to generate..."
            )
            run_button = gr.Button("Generate Image")

        with gr.Column():
            output_gallery = gr.Gallery(label="Generated Images")

    # Define the event handler for the button click
    run_button.click(
        fn=generate_image,
        inputs=[images_input, gender_input, prompt_input],
        outputs=output_gallery
    )

# Launch the interface
demo.queue()
demo.launch()