onnew commited on
Commit
f6e429d
·
verified ·
1 Parent(s): 43b27d6

Upload app (1).py

Browse files
Files changed (1) hide show
  1. app (1).py +338 -0
app (1).py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import time
4
+ import json
5
+ import base64
6
+ import os
7
+ from io import BytesIO
8
+ import html
9
+ import re
10
+
11
+
12
+
13
+ class Prodia:
14
+ def __init__(self, api_key, base=None):
15
+ self.base = base or "https://api.prodia.com/v1"
16
+ self.headers = {
17
+ "X-Prodia-Key": api_key
18
+ }
19
+
20
+ def generate(self, params):
21
+ response = self._post(f"{self.base}/sd/generate", params)
22
+ return response.json()
23
+
24
+ def transform(self, params):
25
+ response = self._post(f"{self.base}/sd/transform", params)
26
+ return response.json()
27
+
28
+ def controlnet(self, params):
29
+ response = self._post(f"{self.base}/sd/controlnet", params)
30
+ return response.json()
31
+
32
+ def get_job(self, job_id):
33
+ response = self._get(f"{self.base}/job/{job_id}")
34
+ return response.json()
35
+
36
+ def wait(self, job):
37
+ job_result = job
38
+
39
+ while job_result['status'] not in ['succeeded', 'failed']:
40
+ time.sleep(0.25)
41
+ job_result = self.get_job(job['job'])
42
+
43
+ return job_result
44
+
45
+ def list_models(self):
46
+ response = self._get(f"{self.base}/sd/models")
47
+ return response.json()
48
+
49
+ def list_samplers(self):
50
+ response = self._get(f"{self.base}/sd/samplers")
51
+ return response.json()
52
+
53
+ def _post(self, url, params):
54
+ headers = {
55
+ **self.headers,
56
+ "Content-Type": "application/json"
57
+ }
58
+ response = requests.post(url, headers=headers, data=json.dumps(params))
59
+
60
+ if response.status_code != 200:
61
+ print(params)
62
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
63
+
64
+ return response
65
+
66
+ def _get(self, url):
67
+ response = requests.get(url, headers=self.headers)
68
+
69
+ if response.status_code != 200:
70
+ raise Exception(f"Bad Prodia Response: {response.status_code}")
71
+
72
+ return response
73
+
74
+
75
+ def image_to_base64(image):
76
+ # Convert the image to bytes
77
+ buffered = BytesIO()
78
+ image.save(buffered, format="PNG") # You can change format to PNG if needed
79
+
80
+ # Encode the bytes to base64
81
+ img_str = base64.b64encode(buffered.getvalue())
82
+
83
+ return img_str.decode('utf-8') # Convert bytes to string
84
+
85
+
86
+ def remove_id_and_ext(text):
87
+ text = re.sub(r'\[.*\]$', '', text)
88
+ extension = text[-12:].strip()
89
+ if extension == "safetensors":
90
+ text = text[:-13]
91
+ elif extension == "ckpt":
92
+ text = text[:-4]
93
+ return text
94
+
95
+
96
+ def get_data(text):
97
+ results = {}
98
+ patterns = {
99
+ 'prompt': r'(.*)',
100
+ 'negative_prompt': r'Negative prompt: (.*)',
101
+ 'steps': r'Steps: (\d+),',
102
+ 'seed': r'Seed: (\d+),',
103
+ 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
104
+ 'model': r'Model:\s*([^\s,]+)',
105
+ 'cfg_scale': r'CFG scale:\s*([\d\.]+)',
106
+ 'size': r'Size:\s*([0-9]+x[0-9]+)'
107
+ }
108
+ for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
109
+ match = re.search(patterns[key], text)
110
+ if match:
111
+ results[key] = match.group(1)
112
+ else:
113
+ results[key] = None
114
+ if results['size'] is not None:
115
+ w, h = results['size'].split("x")
116
+ results['w'] = w
117
+ results['h'] = h
118
+ else:
119
+ results['w'] = None
120
+ results['h'] = None
121
+ return results
122
+
123
+
124
+ def send_to_txt2img(image):
125
+
126
+ result = {tabs: gr.update(selected="t2i")}
127
+
128
+ try:
129
+ text = image.info['parameters']
130
+ data = get_data(text)
131
+ result[prompt] = gr.update(value=data['prompt'])
132
+ result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
133
+ result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
134
+ result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
135
+ result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
136
+ result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
137
+ result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
138
+ result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
139
+ if model in model_names:
140
+ result[model] = gr.update(value=model_names[model])
141
+ else:
142
+ result[model] = gr.update()
143
+ return result
144
+
145
+ except Exception as e:
146
+ print(e)
147
+
148
+ return result
149
+
150
+
151
+ prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
152
+ model_list = prodia_client.list_models()
153
+ model_names = {}
154
+
155
+ for model_name in model_list:
156
+ name_without_ext = remove_id_and_ext(model_name)
157
+ model_names[name_without_ext] = model_name
158
+
159
+
160
+ def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
161
+
162
+ result = prodia_client.generate({
163
+ "prompt": prompt,
164
+ "negative_prompt": negative_prompt,
165
+ "model": model,
166
+ "steps": steps,
167
+ "sampler": sampler,
168
+ "cfg_scale": cfg_scale,
169
+ "width": width,
170
+ "height": height,
171
+ "seed": seed
172
+ })
173
+
174
+ job = prodia_client.wait(result)
175
+
176
+ if job['status'] != "succeeded":
177
+ raise gr.Error("job failed")
178
+
179
+ return job["imageUrl"]
180
+
181
+
182
+ def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
183
+ if input_image is None:
184
+ raise gr.Error("Please add an image to run img2img")
185
+
186
+ result = prodia_client.transform({
187
+ "imageData": image_to_base64(input_image),
188
+ "denoising_strength": denoising,
189
+ "prompt": prompt,
190
+ "negative_prompt": negative_prompt,
191
+ "model": model,
192
+ "steps": steps,
193
+ "sampler": sampler,
194
+ "cfg_scale": cfg_scale,
195
+ "width": width,
196
+ "height": height,
197
+ "seed": seed
198
+ })
199
+
200
+ job = prodia_client.wait(result)
201
+
202
+ if job['status'] != "succeeded":
203
+ raise gr.Error("job failed")
204
+
205
+ return job["imageUrl"]
206
+
207
+
208
+ css = """
209
+ #generate {
210
+ height: 100%;
211
+ }
212
+ """
213
+
214
+ with gr.Blocks(css=css) as demo:
215
+ with gr.Row():
216
+ with gr.Column(scale=6):
217
+ model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
218
+
219
+ with gr.Column(scale=1):
220
+ gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
221
+
222
+ with gr.Tabs() as tabs:
223
+ with gr.Tab("txt2img", id='t2i'):
224
+ with gr.Row():
225
+ with gr.Column(scale=6, min_width=600):
226
+ prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
227
+ negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
228
+ with gr.Column():
229
+ text_button = gr.Button("Generate", variant='primary', elem_id="generate")
230
+
231
+ with gr.Row():
232
+ with gr.Column(scale=3):
233
+ with gr.Tab("Generation"):
234
+ with gr.Row():
235
+ with gr.Column(scale=1):
236
+ sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
237
+
238
+ with gr.Column(scale=1):
239
+ steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
240
+
241
+ with gr.Row():
242
+ with gr.Column(scale=1):
243
+ width = gr.Slider(label="Width", maximum=1024, minimum=128, value=512, step=8)
244
+ height = gr.Slider(label="Height", maximum=1024, minimum=128, value=512, step=8)
245
+
246
+ with gr.Column(scale=1):
247
+ batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
248
+ batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
249
+
250
+ cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
251
+ seed = gr.Number(label="Seed", value=-1)
252
+
253
+ with gr.Column(scale=2):
254
+ image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
255
+
256
+ text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
257
+ seed], outputs=image_output, concurrency_limit=64)
258
+
259
+ with gr.Tab("img2img", id='i2i'):
260
+ with gr.Row():
261
+ with gr.Column(scale=6, min_width=600):
262
+ i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
263
+ i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
264
+ with gr.Column():
265
+ i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
266
+
267
+ with gr.Row():
268
+ with gr.Column(scale=3):
269
+ with gr.Tab("Generation"):
270
+ i2i_image_input = gr.Image(type="pil")
271
+
272
+ with gr.Row():
273
+ with gr.Column(scale=1):
274
+ i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
275
+
276
+ with gr.Column(scale=1):
277
+ i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
278
+
279
+ with gr.Row():
280
+ with gr.Column(scale=1):
281
+ i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
282
+ i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
283
+
284
+ with gr.Column(scale=1):
285
+ i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
286
+ i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
287
+
288
+ i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
289
+ i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
290
+ i2i_seed = gr.Number(label="Seed", value=-1)
291
+
292
+ with gr.Column(scale=2):
293
+ i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
294
+
295
+ i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
296
+ model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
297
+ i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
298
+
299
+ with gr.Tab("PNG Info"):
300
+ def plaintext_to_html(text, classname=None):
301
+ content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
302
+
303
+ return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
304
+
305
+
306
+ def get_exif_data(image):
307
+ items = image.info
308
+
309
+ info = ''
310
+ for key, text in items.items():
311
+ info += f"""
312
+ <div>
313
+ <p><b>{plaintext_to_html(str(key))}</b></p>
314
+ <p>{plaintext_to_html(str(text))}</p>
315
+ </div>
316
+ """.strip()+"\n"
317
+
318
+ if len(info) == 0:
319
+ message = "Nothing found in the image."
320
+ info = f"<div><p>{message}<p></div>"
321
+
322
+ return info
323
+
324
+ with gr.Row():
325
+ with gr.Column():
326
+ image_input = gr.Image(type="pil")
327
+
328
+ with gr.Column():
329
+ exif_output = gr.HTML(label="EXIF Data")
330
+ send_to_txt2img_btn = gr.Button("Send to txt2img")
331
+
332
+ image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
333
+ send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
334
+ steps, seed, model, sampler,
335
+ width, height, cfg_scale],
336
+ concurrency_limit=32)
337
+
338
+ demo.queue(max_size=20, api_open=False).launch(max_threads=40, show_api=False)