onnew commited on
Commit
43b27d6
·
verified ·
1 Parent(s): 1dff4c8

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -48
app.py DELETED
@@ -1,48 +0,0 @@
1
- import os
2
- import uuid
3
- import gradio as gr
4
- import torch
5
- from PIL import Image
6
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
7
-
8
- # Configuração do modelo e pipeline
9
- model_id = "stabilityai/stable-diffusion-xl-base-1.0"
10
-
11
- # Carrega o pipeline do modelo
12
- scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
13
- pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
14
- pipe.to("cuda") # Usa GPU para acelerar o processamento
15
-
16
- # Função para geração de imagens
17
- def generate_image(prompt: str, height: int = 576, width: int = 1024, seed: int = None) -> Image.Image:
18
- if not seed:
19
- seed = random.randint(0, 99999)
20
-
21
- # Configurar seed para reprodutibilidade
22
- generator = torch.manual_seed(seed)
23
-
24
- # Gerar a imagem
25
- image = pipe(prompt, height=height, width=width, num_inference_steps=50, guidance_scale=7.5, generator=generator).images[0]
26
-
27
- # Retorna a imagem gerada
28
- return image
29
-
30
- # Interface Gradio
31
- with gr.Blocks() as demo:
32
- gr.Markdown("## Gerador de Imagens com Stable Diffusion XL")
33
-
34
- with gr.Row():
35
- with gr.Column():
36
- prompt = gr.Textbox(label="Texto (Prompt)", placeholder="Descreva a imagem que deseja gerar...")
37
- seed = gr.Number(label="Seed (opcional)", value=None)
38
- generate_button = gr.Button("Gerar Imagem")
39
-
40
- with gr.Column():
41
- output_image = gr.Image(label="Imagem Gerada", type="pil")
42
-
43
- # Conectar botão à função
44
- generate_button.click(fn=generate_image, inputs=[prompt, gr.Number(value=576), gr.Number(value=1024), seed], outputs=output_image)
45
-
46
- # Executar o app
47
- if __name__ == "__main__":
48
- demo.launch(server_name="0.0.0.0", server_port=7860)