omni-research's picture
update to tarsier2-7b-0115
dcd4560
from typing import List, Dict, Union
import os
import random
import tempfile
from PIL import Image, ImageSequence
import base64
import io
import re
import uuid
import json
import numpy as np
import pyarrow.fs as pf
import func_timeout
from func_timeout import func_set_timeout
import math
# fmt: on
import decord
# fmt: off
def denorm_box(points, height, width):
new_points = []
for p in points:
new_points.append((round(p[0] * width), round(p[1] * height)))
return new_points
def process_image_for_tiktok(frames: List[Image.Image], mask_boxes):
mask_boxes = mask_boxes[:len(frames)]
frames = [np.array(f) for f in frames]
# assert len(mask_boxes) == len(frames)
height, width = frames[0].shape[:2]
new_frames = []
for boxes, frame in zip(mask_boxes, frames):
left, top, right, bottom = 0, 0, width, height
for box in boxes:
pts = np.array(denorm_box(box, height, width), np.int32)
upper_bound = max([p[1] for p in pts]) + 30
if bottom > upper_bound:
bottom = upper_bound
frame[pts[0][1]: pts[2][1], pts[0][0]: pts[1][0]] = 0
new_frames.append(Image.fromarray(frame[top: bottom, left: right]))
return new_frames
# 先将视频分成 n_frames 份。训练时,每份随机抽一帧;测试时,每份抽中间的那一帧。
def _sample_frame_indices_v2(
total_frames: int,
n_frames: int,
is_training=False,
video_sampling_strategy = {},
):
total_frames_idxs = list(range(total_frames))
if total_frames <= n_frames:
return total_frames_idxs
k, m = divmod(total_frames, n_frames)
frame_splits = [total_frames_idxs[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in list(range(n_frames))]
if is_training:
sample_ids = [random.choice(i) for i in frame_splits]
else:
sample_ids = [i[(len(i)+1)//2-1] for i in frame_splits]
return sample_ids
# 均匀抽帧,必采样首尾帧。
def _sample_frame_indices_v1(total_frames: int, n_frames: int, is_training=False, video_sampling_strategy = {}):
if n_frames == 1:
return [0] # sample first frame in default
if total_frames <= n_frames:
return list(range(total_frames))
sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)]
return sample_ids
def conduct_disturb_frame(frame_indices):
disturb_type = random.choice(['exchange', 'crop', 'reverse', 'discard'])
n_frames = len(frame_indices)
frame_indices_new = []
if disturb_type == 'exchange':
# 均等分成4个segments, 随机交换两个segment
seg_len = math.ceil(n_frames / 4)
seg_idxs = list(range(0, n_frames, seg_len))
target_idxs = random.sample(range(0, 4), 2)
seg_idxs[target_idxs[0]], seg_idxs[target_idxs[1]] = seg_idxs[target_idxs[1]], seg_idxs[target_idxs[0]]
for idx in seg_idxs:
frame_indices_new += frame_indices[idx: idx+seg_len]
elif disturb_type == 'crop':
# 随机截取出3/4时长,再采均匀n_frames帧
crop_len = math.ceil(n_frames / 4)
idx_s = random.choice(range(0, crop_len+1))
idx_e = n_frames - 1 - (crop_len - idx_s)
frame_indices_new = np.linspace(frame_indices[idx_s], frame_indices[idx_e], n_frames, dtype=int).tolist()
elif disturb_type == 'reverse':
# 随机选择长度为[1/2, 1]时长的片段进行顺序颠倒
reverse_len = math.ceil(random.uniform(0.5,1) * n_frames)
idx_s = random.choice(range(0, n_frames-reverse_len+1))
idx_e = idx_s + reverse_len - 1
frame_indices_new = frame_indices[:idx_s] + list(reversed(frame_indices[idx_s: idx_e+1])) + frame_indices[idx_e+1:]
elif disturb_type == 'discard':
# 随机丢弃一半帧
frame_indices_new = random.sample(frame_indices, n_frames//2)
frame_indices_new.sort()
return disturb_type, frame_indices_new
@func_set_timeout(60)
def _download_file(path):
if path.startswith("hdfs"):
local_path = os.path.join(tempfile.gettempdir(), f'{uuid.uuid4()}_' + os.path.basename(path))
fs = pf.HadoopFileSystem.from_uri(uri="hdfs://harunava")
hdfs_file = fs.open_input_file(path)
file_size = hdfs_file.size()
if file_size > 1024 * 1024 * 1024: # 1G
os.system(f"hadoop fs -get --ct 8 -c 512 '{path}' '{local_path}' > /dev/null 2>&1")
elif file_size > 1024 * 1024 * 100: # 100M
os.system(f"hadoop fs -get '{path}' '{local_path}' > /dev/null 2>&1")
else:
local_fs = pf.LocalFileSystem()
with local_fs.open_output_stream(local_path) as local_file:
while True:
chunk = hdfs_file.read(1024 * 1024 * 100) # Reading 1MB chunks, you can adjust this as needed
if not chunk:
break
local_file.write(chunk)
else:
local_path = path
if not os.path.exists(local_path):
raise FileNotFoundError(f'{local_path}')
return local_path
def download_file(path):
try:
# with timer(f'Download {path}'):
return _download_file(path)
except func_timeout.exceptions.FunctionTimedOut as e:
raise ValueError(e)
class VideoReader:
def __init__(self, path: str) -> None:
self.path = path
self.local_path = self.preprocess()
self.vr = decord.VideoReader(self.local_path, num_threads=1, ctx=decord.cpu(0), fault_tol=1)
self.vr.seek(0)
self._length = len(self.vr)
self._fps = self.vr.get_avg_fps()
@property
def length(self):
return self._length
@property
def fps(self):
return self._fps
def sample(self, frame_indices) -> List[Image.Image]:
frames = self.vr.get_batch(frame_indices).asnumpy()
frames = [Image.fromarray(f).convert('RGB') for f in frames]
return frames
def preprocess(self):
return download_file(self.path)
def postprocess(self):
if self.path.startswith("hdfs"):
os.remove(self.local_path)
class ImageSeqReader:
def __init__(self, path: List[str]) -> None:
self.path = path
self.local_path = self.preprocess()
self._length = len(self.local_path)
self._fps = None
@property
def length(self):
return self._length
@property
def fps(self):
return self._fps
def sample(self, frame_indices):
return [read_image(self.local_path[i]) for i in frame_indices]
def preprocess(self):
local_paths = []
for p in self.path:
local_paths.append(p)
return local_paths
def postprocess(self):
pass
class GIFReader:
def __init__(self, path: str) -> None:
self.path = path
self.local_path = self.preprocess()
self.gif = Image.open(self.local_path)
self._length = self.gif.n_frames
duration = self.gif.info.get('duration', 0) / 1000 # 转换为秒
if duration > 0:
self._fps = 1 / duration
else:
self._fps = None
@property
def length(self):
return self._length
@property
def fps(self):
return self._fps
def sample(self, frame_indices):
frames = []
i = 0
for frame in ImageSequence.Iterator(self.gif):
if i in frame_indices:
frames.append(frame.convert('RGB'))
i += 1
return frames
def preprocess(self):
return download_file(self.path)
def postprocess(self):
if self.path.startswith("hdfs"):
os.remove(self.local_path)
def check_frame_indices(frame_indices, total_frames, video_path):
if frame_indices[-1] == total_frames:
frame_indices[-1] = total_frames - 1
valid_frame_indices = [i for i in frame_indices if i >= 0 and i < total_frames]
if len(valid_frame_indices) != len(frame_indices):
print(f'[Error] frame out of index. video_path={video_path}, frame_indices={frame_indices}, total_frames={total_frames}', flush=True)
return valid_frame_indices
def sample_video(
video_path: Union[str, List[str]],
frame_indices: List[int] = None,
start_frame:int=None,
end_frame:int=None,
n_frames:int = None,
time_indices: List[float] = None,
start_time:int=None,
end_time:int=None,
sampling_fps:float=None,
mask_boxes=None,
is_training:bool=False,
video_sampling_strategy={'video_sampler_version': 'v1'},
return_frame_ids: bool=False,
) -> List[Image.Image]:
do_frame_disturb = video_sampling_strategy.get('do_frame_disturb', False)
if isinstance(video_path, str):
if video_path.endswith('.gif'):
reader = GIFReader(video_path)
else:
reader = VideoReader(video_path)
else:
reader = ImageSeqReader(video_path)
total_frames = reader.length
fps = reader.fps
if sampling_fps is not None:
frame_indices = list(range(0, total_frames, round(fps / sampling_fps)))
if len(frame_indices) > n_frames:
frame_indices = None
if time_indices is not None:
frame_indices = [round(float(i) * fps) for i in time_indices]
if start_time is not None and end_time is not None:
start_frame = round(start_time * fps)
end_frame = round(end_time * fps)
if frame_indices is None:
start_frame = 0 if start_frame is None else round(start_frame)
end_frame = total_frames - 1 if end_frame is None else round(end_frame)
if end_frame == total_frames:
end_frame -= 1
if video_sampling_strategy['video_sampler_version'] == 'v1':
# 均匀抽帧,必采样首尾帧。
frame_indices = _sample_frame_indices_v1(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
elif video_sampling_strategy['video_sampler_version'] == 'v2':
frame_indices = _sample_frame_indices_v2(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
else:
raise ValueError(f"video_sampler_version={video_sampling_strategy['video_sampler_version']} must be 'v1' or 'v2'")
frame_indices = [i + start_frame for i in frame_indices]
frame_indices = check_frame_indices(frame_indices, total_frames, video_path)
if do_frame_disturb:
frame_disturb_type, frame_indices_new = conduct_disturb_frame(frame_indices)
frame_indices_raw = frame_indices[:]
frame_indices = frame_indices_new
frames = reader.sample(frame_indices)
if mask_boxes is not None:
frames = process_image_for_tiktok(frames, mask_boxes)
n = video_sampling_strategy.get('force_frames_n_divisible', 1)
if n > 1 and len(frames) % n != 0:
new_n = n - len(frames) % n
frames.extend([Image.new(mode='RGB', size=frames[-1].size) for _ in range(new_n)])
reader.postprocess()
if do_frame_disturb:
return frames, {"frame_indices": frame_indices, "disturb_type": frame_disturb_type, "frame_indices_raw": frame_indices_raw}
if return_frame_ids:
return frames, frame_indices
return frames
def load_image_from_base64String(img_path):
img = base64.b64decode(open(img_path, "rb").read())
buf = io.BytesIO(img)
img = Image.open(buf)
return img
def read_image(image_path):
local_file = download_file(image_path)
if local_file.endswith('.dat'):
image = load_image_from_base64String(local_file)
else:
image = Image.open(local_file).convert('RGB')
if image_path.startswith("hdfs"):
os.remove(local_file)
return image
def adjust_bbox(text, frame):
width, height = frame.size
new_text = []
start_idx = 0
for match in re.finditer(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', text):
coordinate_matches = re.findall(r"([0-9.]+)", match.group(0))
xys = [float(coord) for coord in coordinate_matches]
new_xys = []
for i in range(len(xys)):
p = xys[i]
if width == height:
pass
if width > height and i % 2 != 0:
p = xys[i] * height
p += (width - height) // 2
p = round(p / width, 2)
if height > width and i % 2 == 0:
p = xys[i] * width
p += (height - width) // 2
p = round(p / height, 2)
new_xys.append(p)
new_text.append(text[start_idx: match.span()[0]])
new_text.append(str(new_xys))
start_idx = match.span()[1]
new_text.append(text[start_idx: ])
text = ''.join(new_text)
return text
def bbox_area(vertices, convert_format = True):
if convert_format:
vertices = list(zip(vertices[::2], vertices[1::2]))
x0, y0 = vertices[0]
x1, y1 = vertices[1]
return abs((x1 - x0) * (y1 - y0))
def polygon_area(vertices, convert_format = True):
if convert_format:
vertices = list(zip(vertices[::2], vertices[1::2]))
n = len(vertices) # 多边形顶点的数量
if n == 2:
return bbox_area(vertices, convert_format=False)
area = 0
for i in range(n):
x1, y1 = vertices[i]
x2, y2 = vertices[(i + 1) % n]
area += x1 * y2 - x2 * y1
return abs(area) / 2
def get_text_len(text_line):
l = 0
for c in text_line:
if '\u4e00' <= c <= '\u9fff':
l += 1
else:
l += 0.5
return l
def filter_ocr_polygon(response, area_threshold=0.0005):
try:
resp = json.loads(response)
except:
return response
new_resp = []
for coords, text_line in resp:
area = polygon_area(coords, convert_format=True)
text_len = get_text_len(text_line)
if text_len == 0:
continue
if area / text_len < area_threshold:
continue
new_resp.append([coords, text_line])
new_resp = json.dumps(new_resp, ensure_ascii=False)
return new_resp
def put_pred_to_data_dict(prediction, data_dict):
msg = data_dict['messages'][-1]
if msg['role'] == 'assistant':
msg['content'][-1]['text'] = prediction
else:
data_dict['messages'].append({
"role": "assistant",
"content": [{"type": "text", "text": prediction}]
})
def get_prompt_from_data_dict(data_dict):
prompt = ""
for msg in data_dict['messages']:
role = msg['role']
assert role in {'system', 'user', 'assistant'}
for content in msg['content']:
if content['type'] == 'text':
if content['text']:
prompt += f"[{role}]: {content['text']}"
elif content['type'] == 'image':
prompt += f"[{role}]: <image>"
elif content['type'] == 'video':
prompt += f"[{role}]: <video>"
prompt += '\n'
return prompt