Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,193 Bytes
dcd4560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
from typing import List, Dict, Union
import os
import random
import tempfile
from PIL import Image, ImageSequence
import base64
import io
import re
import uuid
import json
import numpy as np
import pyarrow.fs as pf
import func_timeout
from func_timeout import func_set_timeout
import math
# fmt: on
import decord
# fmt: off
def denorm_box(points, height, width):
new_points = []
for p in points:
new_points.append((round(p[0] * width), round(p[1] * height)))
return new_points
def process_image_for_tiktok(frames: List[Image.Image], mask_boxes):
mask_boxes = mask_boxes[:len(frames)]
frames = [np.array(f) for f in frames]
# assert len(mask_boxes) == len(frames)
height, width = frames[0].shape[:2]
new_frames = []
for boxes, frame in zip(mask_boxes, frames):
left, top, right, bottom = 0, 0, width, height
for box in boxes:
pts = np.array(denorm_box(box, height, width), np.int32)
upper_bound = max([p[1] for p in pts]) + 30
if bottom > upper_bound:
bottom = upper_bound
frame[pts[0][1]: pts[2][1], pts[0][0]: pts[1][0]] = 0
new_frames.append(Image.fromarray(frame[top: bottom, left: right]))
return new_frames
# 先将视频分成 n_frames 份。训练时,每份随机抽一帧;测试时,每份抽中间的那一帧。
def _sample_frame_indices_v2(
total_frames: int,
n_frames: int,
is_training=False,
video_sampling_strategy = {},
):
total_frames_idxs = list(range(total_frames))
if total_frames <= n_frames:
return total_frames_idxs
k, m = divmod(total_frames, n_frames)
frame_splits = [total_frames_idxs[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in list(range(n_frames))]
if is_training:
sample_ids = [random.choice(i) for i in frame_splits]
else:
sample_ids = [i[(len(i)+1)//2-1] for i in frame_splits]
return sample_ids
# 均匀抽帧,必采样首尾帧。
def _sample_frame_indices_v1(total_frames: int, n_frames: int, is_training=False, video_sampling_strategy = {}):
if n_frames == 1:
return [0] # sample first frame in default
if total_frames <= n_frames:
return list(range(total_frames))
sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)]
return sample_ids
def conduct_disturb_frame(frame_indices):
disturb_type = random.choice(['exchange', 'crop', 'reverse', 'discard'])
n_frames = len(frame_indices)
frame_indices_new = []
if disturb_type == 'exchange':
# 均等分成4个segments, 随机交换两个segment
seg_len = math.ceil(n_frames / 4)
seg_idxs = list(range(0, n_frames, seg_len))
target_idxs = random.sample(range(0, 4), 2)
seg_idxs[target_idxs[0]], seg_idxs[target_idxs[1]] = seg_idxs[target_idxs[1]], seg_idxs[target_idxs[0]]
for idx in seg_idxs:
frame_indices_new += frame_indices[idx: idx+seg_len]
elif disturb_type == 'crop':
# 随机截取出3/4时长,再采均匀n_frames帧
crop_len = math.ceil(n_frames / 4)
idx_s = random.choice(range(0, crop_len+1))
idx_e = n_frames - 1 - (crop_len - idx_s)
frame_indices_new = np.linspace(frame_indices[idx_s], frame_indices[idx_e], n_frames, dtype=int).tolist()
elif disturb_type == 'reverse':
# 随机选择长度为[1/2, 1]时长的片段进行顺序颠倒
reverse_len = math.ceil(random.uniform(0.5,1) * n_frames)
idx_s = random.choice(range(0, n_frames-reverse_len+1))
idx_e = idx_s + reverse_len - 1
frame_indices_new = frame_indices[:idx_s] + list(reversed(frame_indices[idx_s: idx_e+1])) + frame_indices[idx_e+1:]
elif disturb_type == 'discard':
# 随机丢弃一半帧
frame_indices_new = random.sample(frame_indices, n_frames//2)
frame_indices_new.sort()
return disturb_type, frame_indices_new
@func_set_timeout(60)
def _download_file(path):
if path.startswith("hdfs"):
local_path = os.path.join(tempfile.gettempdir(), f'{uuid.uuid4()}_' + os.path.basename(path))
fs = pf.HadoopFileSystem.from_uri(uri="hdfs://harunava")
hdfs_file = fs.open_input_file(path)
file_size = hdfs_file.size()
if file_size > 1024 * 1024 * 1024: # 1G
os.system(f"hadoop fs -get --ct 8 -c 512 '{path}' '{local_path}' > /dev/null 2>&1")
elif file_size > 1024 * 1024 * 100: # 100M
os.system(f"hadoop fs -get '{path}' '{local_path}' > /dev/null 2>&1")
else:
local_fs = pf.LocalFileSystem()
with local_fs.open_output_stream(local_path) as local_file:
while True:
chunk = hdfs_file.read(1024 * 1024 * 100) # Reading 1MB chunks, you can adjust this as needed
if not chunk:
break
local_file.write(chunk)
else:
local_path = path
if not os.path.exists(local_path):
raise FileNotFoundError(f'{local_path}')
return local_path
def download_file(path):
try:
# with timer(f'Download {path}'):
return _download_file(path)
except func_timeout.exceptions.FunctionTimedOut as e:
raise ValueError(e)
class VideoReader:
def __init__(self, path: str) -> None:
self.path = path
self.local_path = self.preprocess()
self.vr = decord.VideoReader(self.local_path, num_threads=1, ctx=decord.cpu(0), fault_tol=1)
self.vr.seek(0)
self._length = len(self.vr)
self._fps = self.vr.get_avg_fps()
@property
def length(self):
return self._length
@property
def fps(self):
return self._fps
def sample(self, frame_indices) -> List[Image.Image]:
frames = self.vr.get_batch(frame_indices).asnumpy()
frames = [Image.fromarray(f).convert('RGB') for f in frames]
return frames
def preprocess(self):
return download_file(self.path)
def postprocess(self):
if self.path.startswith("hdfs"):
os.remove(self.local_path)
class ImageSeqReader:
def __init__(self, path: List[str]) -> None:
self.path = path
self.local_path = self.preprocess()
self._length = len(self.local_path)
self._fps = None
@property
def length(self):
return self._length
@property
def fps(self):
return self._fps
def sample(self, frame_indices):
return [read_image(self.local_path[i]) for i in frame_indices]
def preprocess(self):
local_paths = []
for p in self.path:
local_paths.append(p)
return local_paths
def postprocess(self):
pass
class GIFReader:
def __init__(self, path: str) -> None:
self.path = path
self.local_path = self.preprocess()
self.gif = Image.open(self.local_path)
self._length = self.gif.n_frames
duration = self.gif.info.get('duration', 0) / 1000 # 转换为秒
if duration > 0:
self._fps = 1 / duration
else:
self._fps = None
@property
def length(self):
return self._length
@property
def fps(self):
return self._fps
def sample(self, frame_indices):
frames = []
i = 0
for frame in ImageSequence.Iterator(self.gif):
if i in frame_indices:
frames.append(frame.convert('RGB'))
i += 1
return frames
def preprocess(self):
return download_file(self.path)
def postprocess(self):
if self.path.startswith("hdfs"):
os.remove(self.local_path)
def check_frame_indices(frame_indices, total_frames, video_path):
if frame_indices[-1] == total_frames:
frame_indices[-1] = total_frames - 1
valid_frame_indices = [i for i in frame_indices if i >= 0 and i < total_frames]
if len(valid_frame_indices) != len(frame_indices):
print(f'[Error] frame out of index. video_path={video_path}, frame_indices={frame_indices}, total_frames={total_frames}', flush=True)
return valid_frame_indices
def sample_video(
video_path: Union[str, List[str]],
frame_indices: List[int] = None,
start_frame:int=None,
end_frame:int=None,
n_frames:int = None,
time_indices: List[float] = None,
start_time:int=None,
end_time:int=None,
sampling_fps:float=None,
mask_boxes=None,
is_training:bool=False,
video_sampling_strategy={'video_sampler_version': 'v1'},
return_frame_ids: bool=False,
) -> List[Image.Image]:
do_frame_disturb = video_sampling_strategy.get('do_frame_disturb', False)
if isinstance(video_path, str):
if video_path.endswith('.gif'):
reader = GIFReader(video_path)
else:
reader = VideoReader(video_path)
else:
reader = ImageSeqReader(video_path)
total_frames = reader.length
fps = reader.fps
if sampling_fps is not None:
frame_indices = list(range(0, total_frames, round(fps / sampling_fps)))
if len(frame_indices) > n_frames:
frame_indices = None
if time_indices is not None:
frame_indices = [round(float(i) * fps) for i in time_indices]
if start_time is not None and end_time is not None:
start_frame = round(start_time * fps)
end_frame = round(end_time * fps)
if frame_indices is None:
start_frame = 0 if start_frame is None else round(start_frame)
end_frame = total_frames - 1 if end_frame is None else round(end_frame)
if end_frame == total_frames:
end_frame -= 1
if video_sampling_strategy['video_sampler_version'] == 'v1':
# 均匀抽帧,必采样首尾帧。
frame_indices = _sample_frame_indices_v1(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
elif video_sampling_strategy['video_sampler_version'] == 'v2':
frame_indices = _sample_frame_indices_v2(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
else:
raise ValueError(f"video_sampler_version={video_sampling_strategy['video_sampler_version']} must be 'v1' or 'v2'")
frame_indices = [i + start_frame for i in frame_indices]
frame_indices = check_frame_indices(frame_indices, total_frames, video_path)
if do_frame_disturb:
frame_disturb_type, frame_indices_new = conduct_disturb_frame(frame_indices)
frame_indices_raw = frame_indices[:]
frame_indices = frame_indices_new
frames = reader.sample(frame_indices)
if mask_boxes is not None:
frames = process_image_for_tiktok(frames, mask_boxes)
n = video_sampling_strategy.get('force_frames_n_divisible', 1)
if n > 1 and len(frames) % n != 0:
new_n = n - len(frames) % n
frames.extend([Image.new(mode='RGB', size=frames[-1].size) for _ in range(new_n)])
reader.postprocess()
if do_frame_disturb:
return frames, {"frame_indices": frame_indices, "disturb_type": frame_disturb_type, "frame_indices_raw": frame_indices_raw}
if return_frame_ids:
return frames, frame_indices
return frames
def load_image_from_base64String(img_path):
img = base64.b64decode(open(img_path, "rb").read())
buf = io.BytesIO(img)
img = Image.open(buf)
return img
def read_image(image_path):
local_file = download_file(image_path)
if local_file.endswith('.dat'):
image = load_image_from_base64String(local_file)
else:
image = Image.open(local_file).convert('RGB')
if image_path.startswith("hdfs"):
os.remove(local_file)
return image
def adjust_bbox(text, frame):
width, height = frame.size
new_text = []
start_idx = 0
for match in re.finditer(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', text):
coordinate_matches = re.findall(r"([0-9.]+)", match.group(0))
xys = [float(coord) for coord in coordinate_matches]
new_xys = []
for i in range(len(xys)):
p = xys[i]
if width == height:
pass
if width > height and i % 2 != 0:
p = xys[i] * height
p += (width - height) // 2
p = round(p / width, 2)
if height > width and i % 2 == 0:
p = xys[i] * width
p += (height - width) // 2
p = round(p / height, 2)
new_xys.append(p)
new_text.append(text[start_idx: match.span()[0]])
new_text.append(str(new_xys))
start_idx = match.span()[1]
new_text.append(text[start_idx: ])
text = ''.join(new_text)
return text
def bbox_area(vertices, convert_format = True):
if convert_format:
vertices = list(zip(vertices[::2], vertices[1::2]))
x0, y0 = vertices[0]
x1, y1 = vertices[1]
return abs((x1 - x0) * (y1 - y0))
def polygon_area(vertices, convert_format = True):
if convert_format:
vertices = list(zip(vertices[::2], vertices[1::2]))
n = len(vertices) # 多边形顶点的数量
if n == 2:
return bbox_area(vertices, convert_format=False)
area = 0
for i in range(n):
x1, y1 = vertices[i]
x2, y2 = vertices[(i + 1) % n]
area += x1 * y2 - x2 * y1
return abs(area) / 2
def get_text_len(text_line):
l = 0
for c in text_line:
if '\u4e00' <= c <= '\u9fff':
l += 1
else:
l += 0.5
return l
def filter_ocr_polygon(response, area_threshold=0.0005):
try:
resp = json.loads(response)
except:
return response
new_resp = []
for coords, text_line in resp:
area = polygon_area(coords, convert_format=True)
text_len = get_text_len(text_line)
if text_len == 0:
continue
if area / text_len < area_threshold:
continue
new_resp.append([coords, text_line])
new_resp = json.dumps(new_resp, ensure_ascii=False)
return new_resp
def put_pred_to_data_dict(prediction, data_dict):
msg = data_dict['messages'][-1]
if msg['role'] == 'assistant':
msg['content'][-1]['text'] = prediction
else:
data_dict['messages'].append({
"role": "assistant",
"content": [{"type": "text", "text": prediction}]
})
def get_prompt_from_data_dict(data_dict):
prompt = ""
for msg in data_dict['messages']:
role = msg['role']
assert role in {'system', 'user', 'assistant'}
for content in msg['content']:
if content['type'] == 'text':
if content['text']:
prompt += f"[{role}]: {content['text']}"
elif content['type'] == 'image':
prompt += f"[{role}]: <image>"
elif content['type'] == 'video':
prompt += f"[{role}]: <video>"
prompt += '\n'
return prompt
|