File size: 15,193 Bytes
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from typing import List, Dict, Union
import os
import random
import tempfile
from PIL import Image, ImageSequence
import base64
import io
import re
import uuid
import json
import numpy as np
import pyarrow.fs as pf
import func_timeout
from func_timeout import func_set_timeout
import math

# fmt: on
import decord
# fmt: off


def denorm_box(points, height, width):
    new_points = []
    for p in points:
        new_points.append((round(p[0] * width), round(p[1] * height)))
    return new_points

def process_image_for_tiktok(frames: List[Image.Image], mask_boxes):
    mask_boxes = mask_boxes[:len(frames)]
    frames = [np.array(f) for f in frames]
    # assert len(mask_boxes) == len(frames)
    height, width = frames[0].shape[:2]

    new_frames = []
    for boxes, frame in zip(mask_boxes, frames):
        left, top, right, bottom = 0, 0, width, height
        for box in boxes:
            pts = np.array(denorm_box(box, height, width), np.int32)
            upper_bound = max([p[1] for p in pts]) + 30
            if bottom > upper_bound:
                bottom = upper_bound
            frame[pts[0][1]: pts[2][1], pts[0][0]: pts[1][0]] = 0
        
        new_frames.append(Image.fromarray(frame[top: bottom, left: right]))
    return new_frames

# 先将视频分成 n_frames 份。训练时,每份随机抽一帧;测试时,每份抽中间的那一帧。
def _sample_frame_indices_v2(
        total_frames: int, 
        n_frames: int, 
        is_training=False, 
        video_sampling_strategy = {},
    ):
    total_frames_idxs = list(range(total_frames))
    if total_frames <= n_frames: 
        return total_frames_idxs
    k, m = divmod(total_frames, n_frames)
    frame_splits = [total_frames_idxs[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in list(range(n_frames))]
    if is_training:
        sample_ids = [random.choice(i) for i in frame_splits]
    else:
        sample_ids = [i[(len(i)+1)//2-1] for i in frame_splits]
    return sample_ids

# 均匀抽帧,必采样首尾帧。
def _sample_frame_indices_v1(total_frames: int, n_frames: int, is_training=False, video_sampling_strategy = {}):
    if n_frames == 1:
        return [0]  # sample first frame in default
    if total_frames <= n_frames:
        return list(range(total_frames))
    sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)]
    return sample_ids

def conduct_disturb_frame(frame_indices):
    disturb_type = random.choice(['exchange', 'crop', 'reverse', 'discard'])
    n_frames = len(frame_indices)
    frame_indices_new = []
    if disturb_type == 'exchange':
        # 均等分成4个segments, 随机交换两个segment
        seg_len = math.ceil(n_frames / 4)
        seg_idxs = list(range(0, n_frames, seg_len))
        target_idxs = random.sample(range(0, 4), 2)
        seg_idxs[target_idxs[0]], seg_idxs[target_idxs[1]] = seg_idxs[target_idxs[1]], seg_idxs[target_idxs[0]]
        for idx in seg_idxs:
            frame_indices_new += frame_indices[idx: idx+seg_len]
    elif disturb_type == 'crop':
        # 随机截取出3/4时长,再采均匀n_frames帧
        crop_len = math.ceil(n_frames / 4)
        idx_s = random.choice(range(0, crop_len+1))
        idx_e = n_frames - 1 - (crop_len - idx_s)
        frame_indices_new = np.linspace(frame_indices[idx_s], frame_indices[idx_e], n_frames, dtype=int).tolist()
    elif disturb_type == 'reverse':
        # 随机选择长度为[1/2, 1]时长的片段进行顺序颠倒
        reverse_len = math.ceil(random.uniform(0.5,1) * n_frames)
        idx_s = random.choice(range(0, n_frames-reverse_len+1))
        idx_e = idx_s + reverse_len - 1
        frame_indices_new = frame_indices[:idx_s] + list(reversed(frame_indices[idx_s: idx_e+1])) + frame_indices[idx_e+1:]
    elif disturb_type == 'discard':
        # 随机丢弃一半帧
        frame_indices_new = random.sample(frame_indices, n_frames//2)
        frame_indices_new.sort()
    return disturb_type, frame_indices_new

@func_set_timeout(60)
def _download_file(path):
    if path.startswith("hdfs"):
        local_path = os.path.join(tempfile.gettempdir(), f'{uuid.uuid4()}_' + os.path.basename(path))

        fs = pf.HadoopFileSystem.from_uri(uri="hdfs://harunava")
        hdfs_file = fs.open_input_file(path)
        file_size = hdfs_file.size()
        if file_size > 1024 * 1024 * 1024: # 1G
            os.system(f"hadoop fs -get --ct 8 -c 512 '{path}' '{local_path}' > /dev/null 2>&1") 
        elif file_size > 1024 * 1024 * 100: # 100M
            os.system(f"hadoop fs -get '{path}' '{local_path}' > /dev/null 2>&1") 
        else:
            local_fs = pf.LocalFileSystem()
            with local_fs.open_output_stream(local_path) as local_file:
                while True:
                    chunk = hdfs_file.read(1024 * 1024 * 100)  # Reading 1MB chunks, you can adjust this as needed
                    if not chunk:
                        break
                    local_file.write(chunk)
    else:
        local_path = path

    if not os.path.exists(local_path):
        raise FileNotFoundError(f'{local_path}')

    return local_path

def download_file(path):
    try:
        # with timer(f'Download {path}'):
        return _download_file(path)
    except func_timeout.exceptions.FunctionTimedOut as e:
        raise ValueError(e)

class VideoReader:
    def __init__(self, path: str) -> None:
        self.path = path
        self.local_path = self.preprocess()
        self.vr = decord.VideoReader(self.local_path, num_threads=1, ctx=decord.cpu(0), fault_tol=1)
        self.vr.seek(0)
        self._length = len(self.vr)
        self._fps = self.vr.get_avg_fps()
    
    @property
    def length(self):
        return self._length
    
    @property
    def fps(self):
        return self._fps

    def sample(self, frame_indices) -> List[Image.Image]:
        frames = self.vr.get_batch(frame_indices).asnumpy()
        frames = [Image.fromarray(f).convert('RGB') for f in frames]
        return frames

    def preprocess(self):
        return download_file(self.path)

    def postprocess(self):
        if self.path.startswith("hdfs"):
            os.remove(self.local_path)

class ImageSeqReader:
    def __init__(self, path: List[str]) -> None:
        self.path = path
        self.local_path = self.preprocess()
        self._length = len(self.local_path)
        self._fps = None
    
    @property
    def length(self):
        return self._length
    
    @property
    def fps(self):
        return self._fps

    def sample(self, frame_indices):
        return [read_image(self.local_path[i]) for i in frame_indices]

    def preprocess(self):
        local_paths = []
        for p in self.path:
             local_paths.append(p)
        return local_paths

    def postprocess(self):
        pass

class GIFReader:
    def __init__(self, path: str) -> None:
        self.path = path
        self.local_path = self.preprocess()
        self.gif = Image.open(self.local_path)
        self._length = self.gif.n_frames
        duration = self.gif.info.get('duration', 0) / 1000  # 转换为秒
        if duration > 0:
            self._fps = 1 / duration
        else:
            self._fps = None
    
    @property
    def length(self):
        return self._length
    
    @property
    def fps(self):
        return self._fps

    def sample(self, frame_indices):
        frames = []
        i = 0
        for frame in ImageSequence.Iterator(self.gif):
            if i in frame_indices:
                frames.append(frame.convert('RGB'))
            i += 1
        return frames

    def preprocess(self):
        return download_file(self.path)

    def postprocess(self):
        if self.path.startswith("hdfs"):
            os.remove(self.local_path)

def check_frame_indices(frame_indices, total_frames, video_path):
    if frame_indices[-1] == total_frames:
        frame_indices[-1] = total_frames - 1

    valid_frame_indices = [i for i in frame_indices if i >= 0 and i < total_frames]

    if len(valid_frame_indices) != len(frame_indices):
        print(f'[Error] frame out of index. video_path={video_path}, frame_indices={frame_indices}, total_frames={total_frames}', flush=True)
    
    return valid_frame_indices


def sample_video(
    video_path: Union[str, List[str]], 
    frame_indices: List[int] = None, 
    start_frame:int=None, 
    end_frame:int=None, 
    n_frames:int = None,
    time_indices: List[float] = None,
    start_time:int=None,
    end_time:int=None,
    sampling_fps:float=None,
    mask_boxes=None,
    is_training:bool=False,
    video_sampling_strategy={'video_sampler_version': 'v1'},
    return_frame_ids: bool=False,
    ) -> List[Image.Image]:

    do_frame_disturb = video_sampling_strategy.get('do_frame_disturb', False)

    if isinstance(video_path, str):
        if video_path.endswith('.gif'):
            reader = GIFReader(video_path)
        else:
            reader = VideoReader(video_path)
    else:
        reader = ImageSeqReader(video_path)
    
    total_frames = reader.length
    fps = reader.fps

    if sampling_fps is not None:
        frame_indices = list(range(0, total_frames, round(fps / sampling_fps)))
        if len(frame_indices) > n_frames:
            frame_indices = None

    if time_indices is not None:
        frame_indices = [round(float(i) * fps) for i in time_indices]

    if start_time is not None and end_time is not None:
        start_frame = round(start_time * fps)
        end_frame = round(end_time * fps)   

    if frame_indices is None:
        start_frame = 0 if start_frame is None else round(start_frame)
        end_frame = total_frames - 1 if end_frame is None else round(end_frame)

        if end_frame == total_frames:
            end_frame -= 1

        if video_sampling_strategy['video_sampler_version'] == 'v1':
            # 均匀抽帧,必采样首尾帧。
            frame_indices = _sample_frame_indices_v1(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
        elif video_sampling_strategy['video_sampler_version'] == 'v2':
            frame_indices = _sample_frame_indices_v2(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
        else:
            raise ValueError(f"video_sampler_version={video_sampling_strategy['video_sampler_version']} must be 'v1' or 'v2'")
        frame_indices = [i + start_frame for i in frame_indices]
    
    frame_indices = check_frame_indices(frame_indices, total_frames, video_path)

    if do_frame_disturb:
        frame_disturb_type, frame_indices_new = conduct_disturb_frame(frame_indices)
        frame_indices_raw = frame_indices[:]
        frame_indices = frame_indices_new
        
    frames = reader.sample(frame_indices)
    if mask_boxes is not None:
        frames = process_image_for_tiktok(frames, mask_boxes)
    
    n = video_sampling_strategy.get('force_frames_n_divisible', 1)
    if n > 1 and len(frames) % n != 0:
        new_n = n - len(frames) % n
        frames.extend([Image.new(mode='RGB', size=frames[-1].size) for _ in range(new_n)])
            
    reader.postprocess()

    if do_frame_disturb:
        return frames, {"frame_indices": frame_indices, "disturb_type": frame_disturb_type, "frame_indices_raw": frame_indices_raw}
    if return_frame_ids:
        return frames, frame_indices
    return frames



def load_image_from_base64String(img_path):
    img = base64.b64decode(open(img_path, "rb").read())
    buf = io.BytesIO(img)
    img = Image.open(buf)
    return img

def read_image(image_path):
    local_file = download_file(image_path)

    if local_file.endswith('.dat'):
        image = load_image_from_base64String(local_file)
    else:
        image = Image.open(local_file).convert('RGB')
    if image_path.startswith("hdfs"):
        os.remove(local_file)
    return image


def adjust_bbox(text, frame):
    
    width, height = frame.size
    new_text = []
    start_idx = 0
    for match in re.finditer(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', text):
        coordinate_matches = re.findall(r"([0-9.]+)", match.group(0))
        xys = [float(coord) for coord in coordinate_matches]

        new_xys = []
        for i in range(len(xys)):
            p = xys[i]

            if width == height:
                pass
            
            if width > height and i % 2 != 0:
                p = xys[i] * height
                p += (width - height) // 2
                p = round(p / width, 2)
            
            if height > width and i % 2 == 0:
                p = xys[i] * width
                p += (height - width) // 2
                p = round(p / height, 2)
            
            new_xys.append(p)
        
        new_text.append(text[start_idx: match.span()[0]])
        new_text.append(str(new_xys))
        start_idx = match.span()[1]
    new_text.append(text[start_idx: ])
    text = ''.join(new_text)
        

    return text

def bbox_area(vertices, convert_format = True):
    if convert_format:
        vertices = list(zip(vertices[::2], vertices[1::2]))
    x0, y0 = vertices[0]
    x1, y1 = vertices[1]
    return abs((x1 - x0) * (y1 - y0))

def polygon_area(vertices, convert_format = True):
    if convert_format:
        vertices = list(zip(vertices[::2], vertices[1::2]))
    n = len(vertices)  # 多边形顶点的数量
    if n == 2:
        return bbox_area(vertices, convert_format=False)
    area = 0
    for i in range(n):
        x1, y1 = vertices[i]
        x2, y2 = vertices[(i + 1) % n]
        area += x1 * y2 - x2 * y1
    return abs(area) / 2

def get_text_len(text_line):
    l = 0
    for c in text_line:
        if '\u4e00' <= c <= '\u9fff':
            l += 1
        else:
            l += 0.5
    return l

def filter_ocr_polygon(response, area_threshold=0.0005):
    try:
        resp = json.loads(response)
    except:
        return response
    new_resp = []
    for coords, text_line in resp:
        area = polygon_area(coords, convert_format=True)
        text_len = get_text_len(text_line)
        if text_len == 0:
            continue
        if area / text_len < area_threshold:
            continue
        new_resp.append([coords, text_line])
    new_resp = json.dumps(new_resp, ensure_ascii=False)
    
    return new_resp

def put_pred_to_data_dict(prediction, data_dict):
    msg = data_dict['messages'][-1]
    if msg['role'] == 'assistant':
        msg['content'][-1]['text'] = prediction
    else:
        data_dict['messages'].append({
            "role": "assistant",
            "content": [{"type": "text", "text": prediction}]
        })

def get_prompt_from_data_dict(data_dict):
    prompt = ""
    for msg in data_dict['messages']:
        role = msg['role']
        assert role in {'system', 'user', 'assistant'}
        for content in msg['content']:
            if content['type'] == 'text':
                if content['text']:
                    prompt += f"[{role}]: {content['text']}"
            elif content['type'] == 'image':
                prompt += f"[{role}]: <image>"
            elif content['type'] == 'video':
                prompt += f"[{role}]: <video>"
            prompt += '\n'
    return prompt