omer11a's picture
Allow repeated inference
137c79d
raw
history blame
15.1 kB
import spaces
import gradio as gr
import torch
import nltk
import numpy as np
from PIL import Image, ImageDraw
from diffusers import DDIMScheduler
from pipeline_stable_diffusion_xl_opt import StableDiffusionXLPipeline
from injection_utils import regiter_attention_editor_diffusers
from bounded_attention import BoundedAttention
from pytorch_lightning import seed_everything
from torch_kmeans import KMeans
from functools import partial
RESOLUTION = 256
MIN_SIZE = 0.01
WHITE = 255
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]
def inference(
device,
model,
boxes,
prompts,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
):
seed_everything(seed)
start_code = torch.randn([len(prompts), 4, 128, 128], device=device)
eos_token_index = num_tokens + 1
if hasattr(model, 'editor'):
editor.boxes = boxes
editor.prompts = prompts
editor.subject_token_indices = subject_token_indices
editor.filter_token_indices = filter_token_indices
editor.eos_token_index = eos_token_index
editor.cross_loss_coef = cross_loss_scale
editor.self_loss_coef = self_loss_scale
editor.max_guidance_iter = num_guidance_steps
editor.max_guidance_iter_per_step = num_iterations
editor.start_step_size = init_step_size
self.step_size_coef = (final_step_size - init_step_size) / num_guidance_steps
editor.loss_stopping_value = loss_threshold
num_clusters = len(boxes) * num_clusters_per_subject
self.clustering = KMeans(n_clusters=num_clusters, num_init=100)
else:
editor = BoundedAttention(
boxes,
prompts,
subject_token_indices,
list(range(70, 82)),
list(range(70, 82)),
filter_token_indices=filter_token_indices,
eos_token_index=eos_token_index,
cross_loss_coef=cross_loss_scale,
self_loss_coef=self_loss_scale,
max_guidance_iter=num_guidance_steps,
max_guidance_iter_per_step=num_iterations,
start_step_size=init_step_size,
end_step_size=final_step_size,
loss_stopping_value=loss_threshold,
num_clusters_per_box=num_clusters_per_subject,
)
regiter_attention_editor_diffusers(model, editor)
return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
@spaces.GPU
def generate(
device,
model,
prompt,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
batch_size,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
boxes
):
subject_token_indices = convert_token_indices(subject_token_indices, nested=True)
if len(boxes) != len(subject_token_indices):
raise gr.Error("""
The number of boxes should be equal to the number of subject token indices.
Number of boxes drawn: {}, number of grounding tokens: {}.
""".format(len(boxes), len(subject_token_indices)))
filter_token_indices = convert_token_indices(filter_token_indices) if len(filter_token_indices.strip()) > 0 else None
num_tokens = int(num_tokens) if len(num_tokens.strip()) > 0 else None
prompts = [prompt.strip('.').strip(',').strip()] * batch_size
images = inference(
device, model, boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale,
num_iterations, loss_threshold, num_guidance_steps, seed)
return images
def convert_token_indices(token_indices, nested=False):
if nested:
return [convert_token_indices(indices, nested=False) for indices in token_indices.split(';')]
return [int(index.strip()) for index in token_indices.split(',') if len(index.strip()) > 0]
def draw(sketchpad):
boxes = []
for i, layer in enumerate(sketchpad['layers']):
non_zeros = layer.nonzero()
x1 = x2 = y1 = y2 = 0
if len(non_zeros[0]) > 0:
x1x2 = non_zeros[1] / layer.shape[1]
y1y2 = non_zeros[0] / layer.shape[0]
x1 = x1x2.min()
x2 = x1x2.max()
y1 = y1y2.min()
y2 = y1y2.max()
if (x2 - x1 < MIN_SIZE) or (y2 - y1 < MIN_SIZE):
raise gr.Error(f'Box in layer {i} is too small')
boxes.append((x1, y1, x2, y2))
layout_image = draw_boxes(boxes)
return [boxes, layout_image]
def draw_boxes(boxes):
if len(boxes) == 0:
return None
boxes = np.array(boxes) * RESOLUTION
image = Image.new('RGB', (RESOLUTION, RESOLUTION), (WHITE, WHITE, WHITE))
drawing = ImageDraw.Draw(image)
for i, box in enumerate(boxes.astype(int).tolist()):
drawing.rectangle(box, outline=COLORS[i % len(COLORS)], width=4)
return image
def clear(batch_size):
return [[], None, None, None]
def main():
css = """
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
.tooltip {
color: #555;
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 400px;
background-color: #555;
color: #fff;
text-align: center;
padding: 5px;
border-radius: 5px;
position: absolute;
z-index: 1; /* Set z-index to 1 */
left: 10px;
top: 100%;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
z-index: 9999; /* Set a high z-index value when hovering */
}
"""
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model = StableDiffusionXLPipeline.from_pretrained(model_path, scheduler=scheduler, device=device)
nltk.download('averaged_perceptron_tagger')
with gr.Blocks(
css=css,
title="Bounded Attention demo",
) as demo:
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Bounded Attention</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://omer11a.github.io/bounded-attention/" target="_blank">Project Page</a>]
[<a href="https://arxiv.org/abs/2403.16990" target="_blank">Paper</a>]
[<a href="https://github.com/omer11a/bounded-attention" target="_blank">GitHub</a>]
</span>
</p>
"""
gr.HTML(description)
with gr.Column():
prompt = gr.Textbox(
label="Text prompt",
)
subject_token_indices = gr.Textbox(
label="The token indices of each subject (separate indices for the same subject with commas, and for different subjects with semicolons)",
)
filter_token_indices = gr.Textbox(
label="Optional: The token indices to filter, i.e. conjunctions, numbers, postional relations, etc. (if left empty, this will be automatically inferred)",
)
num_tokens = gr.Textbox(
label="Optional: The number of tokens in the prompt (We use this to verify your input, as sometimes rare words are split into more than one token)",
)
with gr.Row():
sketchpad = gr.Sketchpad(label="Sketch Pad", width=RESOLUTION, height=RESOLUTION)
layout_image = gr.Image(type="pil", label="Bounding Boxes", interactive=False, width=RESOLUTION, height=RESOLUTION, scale=1)
with gr.Row():
clear_button = gr.Button(value='Clear')
generate_layout_button = gr.Button(value='Generate layout')
generate_image_button = gr.Button(value='Generate image')
with gr.Row():
out_images = gr.Gallery(type="pil", label="Generated Images", interactive=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
description = """
<div class="tooltip">Batch size &#9432
<span class="tooltiptext">The number of images to generate.</span>
</div>
<div class="tooltip">Initial step size &#9432
<span class="tooltiptext">The initial step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">Final step size &#9432
<span class="tooltiptext">The final step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">Number of self-attention clusters per subject &#9432
<span class="tooltiptext">Determines the number of clusters when clustering the self-attention maps (#clusters = #subject x #clusters_per_subject). Changing this value might improve semantics (adherence to the prompt), especially when the subjects exceed their bounding boxes.</span>
</div>
<div class="tooltip">Cross-attention loss scale factor &#9432
<span class="tooltiptext">The scale factor of the cross-attention loss term. Increasing it will improve semantic control (adherence to the prompt), but may reduce image quality.</span>
</div>
<div class="tooltip">Self-attention loss scale factor &#9432
<span class="tooltiptext">The scale factor of the self-attention loss term. Increasing it will improve layout control (adherence to the bounding boxes), but may reduce image quality.</span>
</div>
<div class="tooltip">Classifier-free guidance scale &#9432
<span class="tooltiptext">The scale factor of classifier-free guidance.</span>
</div>
<div class="tooltip" >Number of Gradient Descent iterations per timestep &#9432
<span class="tooltiptext">The number of Gradient Descent iterations for each timestep when performing guidance.</span>
</div>
<div class="tooltip" >Loss Threshold &#9432
<span class="tooltiptext">If the loss is below the threshold, Gradient Descent stops for that timestep. </span>
</div>
<div class="tooltip" >Number of guidance steps &#9432
<span class="tooltiptext">The number of timesteps in which to perform guidance.</span>
</div>
"""
gr.HTML(description)
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (currently limited to one sample)")
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=25, label="Initial step size")
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=10, label="Final step size")
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor")
self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor")
classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale")
num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations")
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold")
num_guidance_steps = gr.Slider(minimum=10, maximum=20, step=1, value=15, label="Number of timesteps to perform guidance")
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
boxes = gr.State([])
clear_button.click(
clear,
inputs=[batch_size],
outputs=[boxes, sketchpad, layout_image, out_images],
queue=False,
)
generate_layout_button.click(
draw,
inputs=[sketchpad],
outputs=[boxes, layout_image],
queue=False,
)
generate_image_button.click(
fn=partial(generate, device, model),
inputs=[
prompt, subject_token_indices, filter_token_indices, num_tokens,
init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
seed,
boxes,
],
outputs=[out_images],
queue=True,
)
#with gr.Column():
# gr.Examples(
# examples=[
# [
# [[0.35, 0.4, 0.65, 0.9], [0, 0.6, 0.3, 0.9], [0.7, 0.55, 1, 0.85]],
# "3D Pixar animation of a cute unicorn and a pink hedgehog and a nerdy owl traveling in a magical forest",
# "7,8,17;11,12,17;15,16,17",
# "5,6,9,10,13,14,18,19",
# 286,
# ],
# ],
# inputs=[boxes, prompt, subject_token_indices, filter_token_indices, seed],
# outputs=None,
# fn=None,
# cache_examples=False,
# )
description = """<p> The source code of this demo is based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GLIGEN demo</a>.</p>"""
gr.HTML(description)
demo.launch(show_api=False, show_error=True)
if __name__ == '__main__':
main()