File size: 15,126 Bytes
a4e6738
de34da3
 
a55826f
de34da3
 
 
0f77b33
 
 
 
 
137c79d
0f77b33
de34da3
 
6c2e4ca
de34da3
a47cf5c
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137c79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de34da3
 
 
 
a4e6738
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2e4ca
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2e4ca
 
 
0f77b33
 
 
 
 
 
 
 
 
de34da3
6c2e4ca
 
 
 
de34da3
6c2e4ca
 
de34da3
 
 
 
 
 
a47cf5c
 
de34da3
a47cf5c
de34da3
 
 
 
 
 
6c2e4ca
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33651e9
de34da3
a55826f
 
de34da3
 
 
 
 
 
 
 
 
6c2e4ca
de34da3
 
 
 
 
 
 
 
 
 
 
0f77b33
de34da3
 
 
0f77b33
de34da3
 
 
0f77b33
de34da3
 
 
6c2e4ca
0f77b33
de34da3
 
 
6c2e4ca
 
 
 
 
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f77b33
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2e4ca
 
 
 
 
 
 
 
de34da3
 
 
6c2e4ca
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2e4ca
de34da3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import spaces
import gradio as gr
import torch
import nltk
import numpy as np
from PIL import Image, ImageDraw

from diffusers import DDIMScheduler
from pipeline_stable_diffusion_xl_opt import StableDiffusionXLPipeline
from injection_utils import regiter_attention_editor_diffusers
from bounded_attention import BoundedAttention
from pytorch_lightning import seed_everything
from torch_kmeans import KMeans

from functools import partial

RESOLUTION = 256
MIN_SIZE = 0.01
WHITE = 255
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]


def inference(
    device,
    model,
    boxes,
    prompts,
    subject_token_indices,
    filter_token_indices,
    num_tokens,
    init_step_size,
    final_step_size,
    num_clusters_per_subject,
    cross_loss_scale,
    self_loss_scale,
    classifier_free_guidance_scale,
    num_iterations,
    loss_threshold,
    num_guidance_steps,
    seed,
):
    seed_everything(seed)
    start_code = torch.randn([len(prompts), 4, 128, 128], device=device)
    eos_token_index = num_tokens + 1

    if hasattr(model, 'editor'):
        editor.boxes = boxes
        editor.prompts = prompts
        editor.subject_token_indices = subject_token_indices
        editor.filter_token_indices = filter_token_indices
        editor.eos_token_index = eos_token_index
        editor.cross_loss_coef = cross_loss_scale
        editor.self_loss_coef = self_loss_scale
        editor.max_guidance_iter = num_guidance_steps
        editor.max_guidance_iter_per_step = num_iterations
        editor.start_step_size = init_step_size
        self.step_size_coef = (final_step_size - init_step_size) / num_guidance_steps
        editor.loss_stopping_value = loss_threshold
        num_clusters = len(boxes) * num_clusters_per_subject
        self.clustering = KMeans(n_clusters=num_clusters, num_init=100)

    else:
        editor = BoundedAttention(
            boxes,
            prompts,
            subject_token_indices,
            list(range(70, 82)),
            list(range(70, 82)),
            filter_token_indices=filter_token_indices,
            eos_token_index=eos_token_index,
            cross_loss_coef=cross_loss_scale,
            self_loss_coef=self_loss_scale,
            max_guidance_iter=num_guidance_steps,
            max_guidance_iter_per_step=num_iterations,
            start_step_size=init_step_size,
            end_step_size=final_step_size,
            loss_stopping_value=loss_threshold,
            num_clusters_per_box=num_clusters_per_subject,
        )

        regiter_attention_editor_diffusers(model, editor)

    return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images


@spaces.GPU
def generate(
    device,
    model,
    prompt,
    subject_token_indices,
    filter_token_indices,
    num_tokens,
    init_step_size,
    final_step_size,
    num_clusters_per_subject,
    cross_loss_scale,
    self_loss_scale,
    classifier_free_guidance_scale,
    batch_size,
    num_iterations,
    loss_threshold,
    num_guidance_steps,
    seed,
    boxes
):
    subject_token_indices = convert_token_indices(subject_token_indices, nested=True)
    if len(boxes) != len(subject_token_indices):
        raise gr.Error("""
            The number of boxes should be equal to the number of subject token indices.
            Number of boxes drawn: {}, number of grounding tokens: {}.
        """.format(len(boxes), len(subject_token_indices)))

    filter_token_indices = convert_token_indices(filter_token_indices) if len(filter_token_indices.strip()) > 0 else None
    num_tokens = int(num_tokens) if len(num_tokens.strip()) > 0 else None
    prompts = [prompt.strip('.').strip(',').strip()] * batch_size

    images = inference(
        device, model, boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
        final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale,
        num_iterations, loss_threshold, num_guidance_steps, seed)

    return images


def convert_token_indices(token_indices, nested=False):
    if nested:
        return [convert_token_indices(indices, nested=False) for indices in token_indices.split(';')]

    return [int(index.strip()) for index in token_indices.split(',') if len(index.strip()) > 0]


def draw(sketchpad):
    boxes = []
    for i, layer in enumerate(sketchpad['layers']):
        non_zeros = layer.nonzero()
        x1 = x2 = y1 = y2 = 0
        if len(non_zeros[0]) > 0:
            x1x2 = non_zeros[1] / layer.shape[1]
            y1y2 = non_zeros[0] / layer.shape[0]
            x1 = x1x2.min()
            x2 = x1x2.max()
            y1 = y1y2.min()
            y2 = y1y2.max()

        if (x2 - x1 < MIN_SIZE) or (y2 - y1 < MIN_SIZE):
            raise gr.Error(f'Box in layer {i} is too small')

        boxes.append((x1, y1, x2, y2))

    layout_image = draw_boxes(boxes)
    return [boxes, layout_image]


def draw_boxes(boxes):
    if len(boxes) == 0:
        return None

    boxes = np.array(boxes) * RESOLUTION
    image = Image.new('RGB', (RESOLUTION, RESOLUTION), (WHITE, WHITE, WHITE))
    drawing = ImageDraw.Draw(image)
    for i, box in enumerate(boxes.astype(int).tolist()):
        drawing.rectangle(box, outline=COLORS[i % len(COLORS)], width=4)

    return image


def clear(batch_size):
    return [[], None, None, None]


def main():
    css = """
    #paper-info a {
        color:#008AD7;
        text-decoration: none;
    }
    #paper-info a:hover {
        cursor: pointer;
        text-decoration: none;
    }

    .tooltip {
        color: #555;
        position: relative;
        display: inline-block;
        cursor: pointer;
    }

    .tooltip .tooltiptext {
        visibility: hidden;
        width: 400px;
        background-color: #555;
        color: #fff;
        text-align: center;
        padding: 5px;
        border-radius: 5px;
        position: absolute;
        z-index: 1; /* Set z-index to 1 */
        left: 10px;
        top: 100%;
        opacity: 0;
        transition: opacity 0.3s;
    }

    .tooltip:hover .tooltiptext {
        visibility: visible;
        opacity: 1;
        z-index: 9999; /* Set a high z-index value when hovering */
    }
    """

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model_path = "stabilityai/stable-diffusion-xl-base-1.0"
    scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
    model = StableDiffusionXLPipeline.from_pretrained(model_path, scheduler=scheduler, device=device)

    nltk.download('averaged_perceptron_tagger')

    with gr.Blocks(
            css=css,
            title="Bounded Attention demo",
    ) as demo:
        description = """<p style="text-align: center; font-weight: bold;">
            <span style="font-size: 28px">Bounded Attention</span>
            <br>
            <span style="font-size: 18px" id="paper-info">
                [<a href="https://omer11a.github.io/bounded-attention/" target="_blank">Project Page</a>]
                [<a href="https://arxiv.org/abs/2403.16990" target="_blank">Paper</a>]
                [<a href="https://github.com/omer11a/bounded-attention" target="_blank">GitHub</a>]
            </span>
        </p>
        """
        gr.HTML(description)
        with gr.Column():
            prompt = gr.Textbox(
                label="Text prompt",
            )

            subject_token_indices = gr.Textbox(
                label="The token indices of each subject (separate indices for the same subject with commas, and for different subjects with semicolons)",
            )

            filter_token_indices = gr.Textbox(
                label="Optional: The token indices to filter, i.e. conjunctions, numbers, postional relations, etc. (if left empty, this will be automatically inferred)",
            )

            num_tokens = gr.Textbox(
                label="Optional: The number of tokens in the prompt (We use this to verify your input, as sometimes rare words are split into more than one token)",
            )

            with gr.Row():
                sketchpad = gr.Sketchpad(label="Sketch Pad", width=RESOLUTION, height=RESOLUTION)
                layout_image = gr.Image(type="pil", label="Bounding Boxes", interactive=False, width=RESOLUTION, height=RESOLUTION, scale=1)

            with gr.Row():
                clear_button = gr.Button(value='Clear')
                generate_layout_button = gr.Button(value='Generate layout')
                generate_image_button = gr.Button(value='Generate image')

            with gr.Row():
                out_images = gr.Gallery(type="pil", label="Generated Images", interactive=False)

            with gr.Accordion("Advanced Options", open=False):
                with gr.Column():
                    description = """
                        <div class="tooltip">Batch size &#9432
                        <span class="tooltiptext">The number of images to generate.</span>
                        </div>
                        <div class="tooltip">Initial step size &#9432
                        <span class="tooltiptext">The initial step size of the linear step size scheduler when performing guidance.</span>
                        </div>
                        <div class="tooltip">Final step size &#9432
                        <span class="tooltiptext">The final step size of the linear step size scheduler when performing guidance.</span>
                        </div>
                        <div class="tooltip">Number of self-attention clusters per subject &#9432
                        <span class="tooltiptext">Determines the number of clusters when clustering the self-attention maps (#clusters = #subject x #clusters_per_subject). Changing this value might improve semantics (adherence to the prompt), especially when the subjects exceed their bounding boxes.</span>
                        </div>
                        <div class="tooltip">Cross-attention loss scale factor &#9432
                        <span class="tooltiptext">The scale factor of the cross-attention loss term. Increasing it will improve semantic control (adherence to the prompt), but may reduce image quality.</span>
                        </div>
                        <div class="tooltip">Self-attention loss scale factor &#9432
                        <span class="tooltiptext">The scale factor of the self-attention loss term. Increasing it will improve layout control (adherence to the bounding boxes), but may reduce image quality.</span>
                        </div>
                        <div class="tooltip">Classifier-free guidance scale &#9432
                        <span class="tooltiptext">The scale factor of classifier-free guidance.</span>
                        </div>
                        <div class="tooltip" >Number of Gradient Descent iterations per timestep &#9432
                        <span class="tooltiptext">The number of Gradient Descent iterations for each timestep when performing guidance.</span>
                        </div>
                        <div class="tooltip" >Loss Threshold &#9432
                        <span class="tooltiptext">If the loss is below the threshold, Gradient Descent stops for that timestep. </span>
                        </div>
                        <div class="tooltip" >Number of guidance steps &#9432
                        <span class="tooltiptext">The number of timesteps in which to perform guidance.</span>
                        </div>
                    """
                    gr.HTML(description)
                    batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples (currently limited to one sample)")
                    init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=25, label="Initial step size")
                    final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=10, label="Final step size")
                    num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
                    cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor")
                    self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor")
                    classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale")
                    num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations")
                    loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold")
                    num_guidance_steps = gr.Slider(minimum=10, maximum=20, step=1, value=15, label="Number of timesteps to perform guidance")
                    seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")

            boxes = gr.State([])

            clear_button.click(
                clear,
                inputs=[batch_size],
                outputs=[boxes, sketchpad, layout_image, out_images],
                queue=False,
            )

            generate_layout_button.click(
                draw,
                inputs=[sketchpad],
                outputs=[boxes, layout_image],
                queue=False,
            )

            generate_image_button.click(
                fn=partial(generate, device, model),
                inputs=[
                    prompt, subject_token_indices, filter_token_indices, num_tokens,
                    init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
                    classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
                    seed,
                    boxes,
                ],
                outputs=[out_images],
                queue=True,
            )

        #with gr.Column():
        #    gr.Examples(
        #        examples=[
        #            [
        #                [[0.35, 0.4, 0.65, 0.9], [0, 0.6, 0.3, 0.9], [0.7, 0.55, 1, 0.85]],
        #                "3D Pixar animation of a cute unicorn and a pink hedgehog and a nerdy owl traveling in a magical forest",
        #                "7,8,17;11,12,17;15,16,17",
        #                "5,6,9,10,13,14,18,19",
        #                286,
        #            ],
        #        ],
        #        inputs=[boxes, prompt, subject_token_indices, filter_token_indices, seed],
        #        outputs=None,
        #        fn=None,
        #        cache_examples=False,
        #    )
        description = """<p> The source code of this demo is based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GLIGEN demo</a>.</p>"""
        gr.HTML(description)

    demo.launch(show_api=False, show_error=True)

if __name__ == '__main__':
    main()