Spaces:
Sleeping
Sleeping
jaifar530
commited on
Fix indintation
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from keras.models import load_model
|
|
5 |
from keras.preprocessing.text import Tokenizer
|
6 |
from keras.preprocessing.sequence import pad_sequences
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
-
#from nltk.tokenize import word_tokenize # Assuming you've imported this for word_tokenize
|
9 |
import pickle
|
10 |
import numpy as np
|
11 |
import streamlit as st
|
@@ -31,69 +30,67 @@ if not os.path.exists('my_authorship_model'):
|
|
31 |
st.write(f"Downloaded model size: {len(r.content)} bytes")
|
32 |
|
33 |
# Save the downloaded content
|
34 |
-
with open(zip_file_path, "wb") as f:
|
35 |
f.write(r.content)
|
36 |
|
37 |
-
Debugging: Verify that the zip file exists
|
38 |
if os.path.exists(zip_file_path):
|
39 |
st.write("Zip file exists")
|
40 |
|
41 |
-
Debugging: List contents of the zip file using unzip
|
42 |
subprocess.run(['unzip', '-l', zip_file_path])
|
43 |
|
44 |
# Extract the model using unzip
|
45 |
-
unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d','my_authorship_model'])
|
46 |
|
47 |
# Debugging: Check unzip exit code (0 means success)
|
48 |
if unzip_result.returncode == 0:
|
49 |
-
st.write
|
50 |
# Debugging: List the directory contents after extraction
|
51 |
st.write("Listing directory contents:")
|
52 |
st.write(os.listdir('.'))
|
53 |
-
|
54 |
else:
|
55 |
st.write("Model folder was not extracted successfully using unzip")
|
56 |
exit(1)
|
57 |
else:
|
58 |
st.write("Zip file does not exist")
|
59 |
exit(1)
|
60 |
-
except Exception as e:
|
61 |
st.write(f"Failed to download or extract the model: {e}")
|
62 |
exit(1)
|
63 |
else:
|
64 |
st.write("Model folder exists")
|
65 |
|
66 |
-
Debugging: Print current working directory after extraction
|
67 |
st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
|
68 |
|
69 |
-
|
70 |
-
Debugging: Check if model folder contains required files
|
71 |
try:
|
72 |
model_files = os.listdir('my_authorship_model')
|
73 |
st.write(f"Files in model folder: {model_files}")
|
74 |
except Exception as e:
|
75 |
-
st.write(f
|
76 |
|
77 |
-
Download the required files
|
78 |
file_urls = {
|
79 |
'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
|
80 |
'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
|
81 |
}
|
82 |
|
83 |
-
for filename
|
84 |
try:
|
85 |
r = requests.get(url, headers=headers)
|
86 |
r.raise_for_status()
|
87 |
-
with open(filename, 'wb') as f:
|
88 |
f.write(r.content)
|
89 |
-
except Exception as e:
|
90 |
st.write(f"Failed to download {filename}: {e}")
|
91 |
exit(1)
|
92 |
|
93 |
-
Load the saved model
|
94 |
loaded_model = load_model("my_authorship_model")
|
95 |
|
96 |
-
Load the saved tokenizer and label encoder
|
97 |
with open('tokenizer.pkl', 'rb') as handle:
|
98 |
tokenizer = pickle.load(handle)
|
99 |
|
@@ -107,21 +104,18 @@ def predict_author(new_text, model, tokenizer, label_encoder):
|
|
107 |
sequence = tokenizer.texts_to_sequences([new_text])
|
108 |
padded_sequence = pad_sequences(sequence, maxlen=max_length, padding='post', truncating='post')
|
109 |
prediction = model.predict(padded_sequence)
|
110 |
-
|
111 |
predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
|
112 |
probabilities = prediction[0]
|
113 |
author_probabilities = {}
|
114 |
for idx, prob in enumerate(probabilities):
|
115 |
author = label_encoder.inverse_transform([idx])[0]
|
116 |
author_probabilities[author] = prob
|
117 |
-
|
118 |
return predicted_label, author_probabilities
|
119 |
|
120 |
st.markdown("CNN : version: 1.2")
|
121 |
new_text = st.text_area("Input your text here")
|
122 |
-
#words_counts = word_tokenize(new_text) # Changed input_paragraph to new_text
|
123 |
-
#final_words = len(words_counts)
|
124 |
-
#st.write('Words counts: ', final_words)
|
125 |
|
126 |
# Creates a button named 'Press me'
|
127 |
press_me_button = st.button("Which Model Used?")
|
@@ -129,7 +123,7 @@ press_me_button = st.button("Which Model Used?")
|
|
129 |
if press_me_button:
|
130 |
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
|
131 |
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
|
132 |
-
|
133 |
st.write(f"The text is most likely written by: {predicted_author}")
|
134 |
st.write("Probabilities for each author are (sorted):")
|
135 |
for author, prob in sorted_probabilities:
|
|
|
5 |
from keras.preprocessing.text import Tokenizer
|
6 |
from keras.preprocessing.sequence import pad_sequences
|
7 |
from sklearn.preprocessing import LabelEncoder
|
|
|
8 |
import pickle
|
9 |
import numpy as np
|
10 |
import streamlit as st
|
|
|
30 |
st.write(f"Downloaded model size: {len(r.content)} bytes")
|
31 |
|
32 |
# Save the downloaded content
|
33 |
+
with open(zip_file_path, "wb") as f:
|
34 |
f.write(r.content)
|
35 |
|
36 |
+
# Debugging: Verify that the zip file exists
|
37 |
if os.path.exists(zip_file_path):
|
38 |
st.write("Zip file exists")
|
39 |
|
40 |
+
# Debugging: List contents of the zip file using unzip
|
41 |
subprocess.run(['unzip', '-l', zip_file_path])
|
42 |
|
43 |
# Extract the model using unzip
|
44 |
+
unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d', 'my_authorship_model'])
|
45 |
|
46 |
# Debugging: Check unzip exit code (0 means success)
|
47 |
if unzip_result.returncode == 0:
|
48 |
+
st.write("Model folder successfully extracted using unzip")
|
49 |
# Debugging: List the directory contents after extraction
|
50 |
st.write("Listing directory contents:")
|
51 |
st.write(os.listdir('.'))
|
|
|
52 |
else:
|
53 |
st.write("Model folder was not extracted successfully using unzip")
|
54 |
exit(1)
|
55 |
else:
|
56 |
st.write("Zip file does not exist")
|
57 |
exit(1)
|
58 |
+
except Exception as e:
|
59 |
st.write(f"Failed to download or extract the model: {e}")
|
60 |
exit(1)
|
61 |
else:
|
62 |
st.write("Model folder exists")
|
63 |
|
64 |
+
# Debugging: Print current working directory after extraction
|
65 |
st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
|
66 |
|
67 |
+
# Debugging: Check if model folder contains required files
|
|
|
68 |
try:
|
69 |
model_files = os.listdir('my_authorship_model')
|
70 |
st.write(f"Files in model folder: {model_files}")
|
71 |
except Exception as e:
|
72 |
+
st.write(f"Could not list files in model folder: {e}")
|
73 |
|
74 |
+
# Download the required files
|
75 |
file_urls = {
|
76 |
'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
|
77 |
'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
|
78 |
}
|
79 |
|
80 |
+
for filename, url in file_urls.items():
|
81 |
try:
|
82 |
r = requests.get(url, headers=headers)
|
83 |
r.raise_for_status()
|
84 |
+
with open(filename, 'wb') as f:
|
85 |
f.write(r.content)
|
86 |
+
except Exception as e:
|
87 |
st.write(f"Failed to download {filename}: {e}")
|
88 |
exit(1)
|
89 |
|
90 |
+
# Load the saved model
|
91 |
loaded_model = load_model("my_authorship_model")
|
92 |
|
93 |
+
# Load the saved tokenizer and label encoder
|
94 |
with open('tokenizer.pkl', 'rb') as handle:
|
95 |
tokenizer = pickle.load(handle)
|
96 |
|
|
|
104 |
sequence = tokenizer.texts_to_sequences([new_text])
|
105 |
padded_sequence = pad_sequences(sequence, maxlen=max_length, padding='post', truncating='post')
|
106 |
prediction = model.predict(padded_sequence)
|
107 |
+
|
108 |
predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
|
109 |
probabilities = prediction[0]
|
110 |
author_probabilities = {}
|
111 |
for idx, prob in enumerate(probabilities):
|
112 |
author = label_encoder.inverse_transform([idx])[0]
|
113 |
author_probabilities[author] = prob
|
114 |
+
|
115 |
return predicted_label, author_probabilities
|
116 |
|
117 |
st.markdown("CNN : version: 1.2")
|
118 |
new_text = st.text_area("Input your text here")
|
|
|
|
|
|
|
119 |
|
120 |
# Creates a button named 'Press me'
|
121 |
press_me_button = st.button("Which Model Used?")
|
|
|
123 |
if press_me_button:
|
124 |
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
|
125 |
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
|
126 |
+
|
127 |
st.write(f"The text is most likely written by: {predicted_author}")
|
128 |
st.write("Probabilities for each author are (sorted):")
|
129 |
for author, prob in sorted_probabilities:
|