jaifar530 commited on
Commit
fa4882a
·
unverified ·
1 Parent(s): 82fa775

Update predicted_author

Browse files
Files changed (1) hide show
  1. app.py +25 -22
app.py CHANGED
@@ -31,22 +31,22 @@ if not os.path.exists('my_authorship_model'):
31
  st.write(f"Downloaded model size: {len(r.content)} bytes")
32
 
33
  # Save the downloaded content
34
- with open(zip_file_path, "wb") as f:
35
  f.write(r.content)
36
 
37
- # Debugging: Verify that the zip file exists
38
  if os.path.exists(zip_file_path):
39
  st.write("Zip file exists")
40
 
41
- # Debugging: List contents of the zip file using unzip
42
  subprocess.run(['unzip', '-l', zip_file_path])
43
 
44
  # Extract the model using unzip
45
- unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d', 'my_authorship_model'])
46
 
47
  # Debugging: Check unzip exit code (0 means success)
48
  if unzip_result.returncode == 0:
49
- st.write("Model folder successfully extracted using unzip")
50
  # Debugging: List the directory contents after extraction
51
  st.write("Listing directory contents:")
52
  st.write(os.listdir('.'))
@@ -57,43 +57,43 @@ if not os.path.exists('my_authorship_model'):
57
  else:
58
  st.write("Zip file does not exist")
59
  exit(1)
60
- except Exception as e:
61
  st.write(f"Failed to download or extract the model: {e}")
62
  exit(1)
63
  else:
64
  st.write("Model folder exists")
65
 
66
- # Debugging: Print current working directory after extraction
67
  st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
68
 
69
 
70
- # Debugging: Check if model folder contains required files
71
  try:
72
  model_files = os.listdir('my_authorship_model')
73
  st.write(f"Files in model folder: {model_files}")
74
  except Exception as e:
75
- st.write(f"Could not list files in model folder: {e}")
76
 
77
- # Download required files
78
  file_urls = {
79
  'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
80
  'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
81
  }
82
 
83
- for filename, url in file_urls.items():
84
  try:
85
  r = requests.get(url, headers=headers)
86
  r.raise_for_status()
87
- with open(filename, 'wb') as f:
88
  f.write(r.content)
89
- except Exception as e:
90
  st.write(f"Failed to download {filename}: {e}")
91
  exit(1)
92
 
93
- # Load the saved model
94
  loaded_model = load_model("my_authorship_model")
95
 
96
- # Load the saved tokenizer and label encoder
97
  with open('tokenizer.pkl', 'rb') as handle:
98
  tokenizer = pickle.load(handle)
99
 
@@ -109,7 +109,6 @@ def predict_author(new_text, model, tokenizer, label_encoder):
109
  prediction = model.predict(padded_sequence)
110
 
111
  predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
112
-
113
  probabilities = prediction[0]
114
  author_probabilities = {}
115
  for idx, prob in enumerate(probabilities):
@@ -124,10 +123,14 @@ new_text = st.text_area("Input your text here")
124
  #final_words = len(words_counts)
125
  #st.write('Words counts: ', final_words)
126
 
127
- predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
128
- sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
129
 
130
- st.write(f"The text is most likely written by: {predicted_author}")
131
- st.write("Probabilities for each author are (sorted):")
132
- for author, prob in sorted_probabilities:
133
- st.write(f"{author}: {prob * 100:.2f}%")
 
 
 
 
 
31
  st.write(f"Downloaded model size: {len(r.content)} bytes")
32
 
33
  # Save the downloaded content
34
+ with open(zip_file_path, "wb") as f:
35
  f.write(r.content)
36
 
37
+ Debugging: Verify that the zip file exists
38
  if os.path.exists(zip_file_path):
39
  st.write("Zip file exists")
40
 
41
+ Debugging: List contents of the zip file using unzip
42
  subprocess.run(['unzip', '-l', zip_file_path])
43
 
44
  # Extract the model using unzip
45
+ unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d','my_authorship_model'])
46
 
47
  # Debugging: Check unzip exit code (0 means success)
48
  if unzip_result.returncode == 0:
49
+ st.write (Model folder successfully extracted using unzip")
50
  # Debugging: List the directory contents after extraction
51
  st.write("Listing directory contents:")
52
  st.write(os.listdir('.'))
 
57
  else:
58
  st.write("Zip file does not exist")
59
  exit(1)
60
+ except Exception as e:
61
  st.write(f"Failed to download or extract the model: {e}")
62
  exit(1)
63
  else:
64
  st.write("Model folder exists")
65
 
66
+ Debugging: Print current working directory after extraction
67
  st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
68
 
69
 
70
+ Debugging: Check if model folder contains required files
71
  try:
72
  model_files = os.listdir('my_authorship_model')
73
  st.write(f"Files in model folder: {model_files}")
74
  except Exception as e:
75
+ st.write(f Could not list files in model folder: {e}")
76
 
77
+ Download the required files
78
  file_urls = {
79
  'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
80
  'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
81
  }
82
 
83
+ for filename and url in file_urls.items():
84
  try:
85
  r = requests.get(url, headers=headers)
86
  r.raise_for_status()
87
+ with open(filename, 'wb') as f:
88
  f.write(r.content)
89
+ except Exception as e:
90
  st.write(f"Failed to download {filename}: {e}")
91
  exit(1)
92
 
93
+ Load the saved model
94
  loaded_model = load_model("my_authorship_model")
95
 
96
+ Load the saved tokenizer and label encoder
97
  with open('tokenizer.pkl', 'rb') as handle:
98
  tokenizer = pickle.load(handle)
99
 
 
109
  prediction = model.predict(padded_sequence)
110
 
111
  predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
 
112
  probabilities = prediction[0]
113
  author_probabilities = {}
114
  for idx, prob in enumerate(probabilities):
 
123
  #final_words = len(words_counts)
124
  #st.write('Words counts: ', final_words)
125
 
126
+ # Creates a button named 'Press me'
127
+ press_me_button = st.button("Which Model Used?")
128
 
129
+ if press_me_button:
130
+ predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
131
+ sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
132
+
133
+ st.write(f"The text is most likely written by: {predicted_author}")
134
+ st.write("Probabilities for each author are (sorted):")
135
+ for author, prob in sorted_probabilities:
136
+ st.write(f"{author}: {prob * 100:.2f}%")