jaifar530
test
1cb239d unverified
raw
history blame
5.07 kB
import streamlit as st
st.write("Test system if working")
# import os
# import requests
# import subprocess # Import the subprocess module
# from keras.models import load_model
# from keras.preprocessing.text import Tokenizer
# from keras.preprocessing.sequence import pad_sequences
# from sklearn.preprocessing import LabelEncoder
# import pickle
# import numpy as np
# # Custom headers for the HTTP request
# headers = {
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
# }
# # Debugging: Print current working directory initially
# st.write(f"Initial Current Working Directory: {os.getcwd()}")
# # Check if the model folder exists
# zip_file_path = "my_authorship_model_zip.zip"
# if not os.path.exists('my_authorship_model'):
# try:
# # Download the model
# model_url = 'https://jaifar.net/ADS/my_authorship_model_zip.zip'
# r = requests.get(model_url, headers=headers)
# r.raise_for_status()
# # Debugging: Check if download is successful by examining content length
# st.write(f"Downloaded model size: {len(r.content)} bytes")
# # Save the downloaded content
# with open(zip_file_path, "wb") as f:
# f.write(r.content)
# # Debugging: Verify that the zip file exists
# if os.path.exists(zip_file_path):
# st.write("Zip file exists")
# # Debugging: List contents of the zip file using unzip
# subprocess.run(['unzip', '-l', zip_file_path])
# # Extract the model using unzip
# unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d', 'my_authorship_model'])
# # Debugging: Check unzip exit code (0 means success)
# if unzip_result.returncode == 0:
# st.write("Model folder successfully extracted using unzip")
# # Debugging: List the directory contents after extraction
# st.write("Listing directory contents:")
# st.write(os.listdir('.'))
# else:
# st.write("Model folder was not extracted successfully using unzip")
# exit(1)
# else:
# st.write("Zip file does not exist")
# exit(1)
# except Exception as e:
# st.write(f"Failed to download or extract the model: {e}")
# exit(1)
# else:
# st.write("Model folder exists")
# # Debugging: Print current working directory after extraction
# st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
# # Debugging: Check if model folder contains required files
# try:
# model_files = os.listdir('my_authorship_model')
# st.write(f"Files in model folder: {model_files}")
# except Exception as e:
# st.write(f"Could not list files in model folder: {e}")
# # Download the required files
# file_urls = {
# 'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
# 'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
# }
# for filename, url in file_urls.items():
# try:
# r = requests.get(url, headers=headers)
# r.raise_for_status()
# with open(filename, 'wb') as f:
# f.write(r.content)
# except Exception as e:
# st.write(f"Failed to download {filename}: {e}")
# exit(1)
# # Load the saved model
# loaded_model = load_model("my_authorship_model")
# # Load the saved tokenizer and label encoder
# with open('tokenizer.pkl', 'rb') as handle:
# tokenizer = pickle.load(handle)
# with open('label_encoder.pkl', 'rb') as handle:
# label_encoder = pickle.load(handle)
# max_length = 300 # As defined in the training code
# # Function to predict author for new text
# def predict_author(new_text, model, tokenizer, label_encoder):
# sequence = tokenizer.texts_to_sequences([new_text])
# padded_sequence = pad_sequences(sequence, maxlen=max_length, padding='post', truncating='post')
# prediction = model.predict(padded_sequence)
# predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
# probabilities = prediction[0]
# author_probabilities = {}
# for idx, prob in enumerate(probabilities):
# author = label_encoder.inverse_transform([idx])[0]
# author_probabilities[author] = prob
# return predicted_label, author_probabilities
# st.markdown("CNN : version: 1.2")
# new_text = st.text_area("Input your text here")
# # Creates a button named 'Press me'
# press_me_button = st.button("Which Model Used?")
# if press_me_button:
# predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
# sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
# st.write(f"The text is most likely written by: {predicted_author}")
# st.write("Probabilities for each author are (sorted):")
# for author, prob in sorted_probabilities:
# st.write(f"{author}: {prob * 100:.2f}%")