Spaces:
Running
Running
File size: 5,066 Bytes
ac163d9 1cb239d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import streamlit as st
st.write("Test system if working")
# import os
# import requests
# import subprocess # Import the subprocess module
# from keras.models import load_model
# from keras.preprocessing.text import Tokenizer
# from keras.preprocessing.sequence import pad_sequences
# from sklearn.preprocessing import LabelEncoder
# import pickle
# import numpy as np
# # Custom headers for the HTTP request
# headers = {
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
# }
# # Debugging: Print current working directory initially
# st.write(f"Initial Current Working Directory: {os.getcwd()}")
# # Check if the model folder exists
# zip_file_path = "my_authorship_model_zip.zip"
# if not os.path.exists('my_authorship_model'):
# try:
# # Download the model
# model_url = 'https://jaifar.net/ADS/my_authorship_model_zip.zip'
# r = requests.get(model_url, headers=headers)
# r.raise_for_status()
# # Debugging: Check if download is successful by examining content length
# st.write(f"Downloaded model size: {len(r.content)} bytes")
# # Save the downloaded content
# with open(zip_file_path, "wb") as f:
# f.write(r.content)
# # Debugging: Verify that the zip file exists
# if os.path.exists(zip_file_path):
# st.write("Zip file exists")
# # Debugging: List contents of the zip file using unzip
# subprocess.run(['unzip', '-l', zip_file_path])
# # Extract the model using unzip
# unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d', 'my_authorship_model'])
# # Debugging: Check unzip exit code (0 means success)
# if unzip_result.returncode == 0:
# st.write("Model folder successfully extracted using unzip")
# # Debugging: List the directory contents after extraction
# st.write("Listing directory contents:")
# st.write(os.listdir('.'))
# else:
# st.write("Model folder was not extracted successfully using unzip")
# exit(1)
# else:
# st.write("Zip file does not exist")
# exit(1)
# except Exception as e:
# st.write(f"Failed to download or extract the model: {e}")
# exit(1)
# else:
# st.write("Model folder exists")
# # Debugging: Print current working directory after extraction
# st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
# # Debugging: Check if model folder contains required files
# try:
# model_files = os.listdir('my_authorship_model')
# st.write(f"Files in model folder: {model_files}")
# except Exception as e:
# st.write(f"Could not list files in model folder: {e}")
# # Download the required files
# file_urls = {
# 'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
# 'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
# }
# for filename, url in file_urls.items():
# try:
# r = requests.get(url, headers=headers)
# r.raise_for_status()
# with open(filename, 'wb') as f:
# f.write(r.content)
# except Exception as e:
# st.write(f"Failed to download {filename}: {e}")
# exit(1)
# # Load the saved model
# loaded_model = load_model("my_authorship_model")
# # Load the saved tokenizer and label encoder
# with open('tokenizer.pkl', 'rb') as handle:
# tokenizer = pickle.load(handle)
# with open('label_encoder.pkl', 'rb') as handle:
# label_encoder = pickle.load(handle)
# max_length = 300 # As defined in the training code
# # Function to predict author for new text
# def predict_author(new_text, model, tokenizer, label_encoder):
# sequence = tokenizer.texts_to_sequences([new_text])
# padded_sequence = pad_sequences(sequence, maxlen=max_length, padding='post', truncating='post')
# prediction = model.predict(padded_sequence)
# predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
# probabilities = prediction[0]
# author_probabilities = {}
# for idx, prob in enumerate(probabilities):
# author = label_encoder.inverse_transform([idx])[0]
# author_probabilities[author] = prob
# return predicted_label, author_probabilities
# st.markdown("CNN : version: 1.2")
# new_text = st.text_area("Input your text here")
# # Creates a button named 'Press me'
# press_me_button = st.button("Which Model Used?")
# if press_me_button:
# predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
# sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
# st.write(f"The text is most likely written by: {predicted_author}")
# st.write("Probabilities for each author are (sorted):")
# for author, prob in sorted_probabilities:
# st.write(f"{author}: {prob * 100:.2f}%")
|