Spaces:
Runtime error
Runtime error
import logging | |
import os | |
import time | |
from threading import Thread | |
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional, Tuple | |
import gradio as gr | |
import transformers | |
from gradio.components import Component # cannot use TYPE_CHECKING here | |
from transformers.trainer import TRAINING_ARGS_NAME | |
from ..extras.callbacks import LogCallback | |
from ..extras.constants import TRAINING_STAGES | |
from ..extras.logging import LoggerHandler | |
from ..extras.misc import get_device_count, torch_gc | |
from ..train import run_exp | |
from .common import get_module, get_save_dir, load_config | |
from .locales import ALERTS | |
from .utils import gen_cmd, get_eval_results, update_process_bar | |
if TYPE_CHECKING: | |
from .manager import Manager | |
class Runner: | |
def __init__(self, manager: "Manager", demo_mode: Optional[bool] = False) -> None: | |
self.manager = manager | |
self.demo_mode = demo_mode | |
""" Resume """ | |
self.thread: "Thread" = None | |
self.do_train = True | |
self.running_data: Dict["Component", Any] = None | |
""" State """ | |
self.aborted = False | |
self.running = False | |
""" Handler """ | |
self.logger_handler = LoggerHandler() | |
self.logger_handler.setLevel(logging.INFO) | |
logging.root.addHandler(self.logger_handler) | |
transformers.logging.add_handler(self.logger_handler) | |
def alive(self) -> bool: | |
return self.thread is not None | |
def set_abort(self) -> None: | |
self.aborted = True | |
def _initialize(self, data: Dict[Component, Any], do_train: bool, from_preview: bool) -> str: | |
get = lambda name: data[self.manager.get_elem_by_name(name)] | |
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path") | |
dataset = get("train.dataset") if do_train else get("eval.dataset") | |
if self.running: | |
return ALERTS["err_conflict"][lang] | |
if not model_name: | |
return ALERTS["err_no_model"][lang] | |
if not model_path: | |
return ALERTS["err_no_path"][lang] | |
if len(dataset) == 0: | |
return ALERTS["err_no_dataset"][lang] | |
if self.demo_mode and (not from_preview): | |
return ALERTS["err_demo"][lang] | |
if not from_preview and get_device_count() > 1: | |
return ALERTS["err_device_count"][lang] | |
self.aborted = False | |
self.logger_handler.reset() | |
self.trainer_callback = LogCallback(self) | |
return "" | |
def _finalize(self, lang: str, finish_info: str) -> str: | |
self.thread = None | |
self.running_data = None | |
self.running = False | |
torch_gc() | |
if self.aborted: | |
return ALERTS["info_aborted"][lang] | |
else: | |
return finish_info | |
def _parse_train_args(self, data: Dict[Component, Any]) -> Dict[str, Any]: | |
get = lambda name: data[self.manager.get_elem_by_name(name)] | |
user_config = load_config() | |
if get("top.adapter_path"): | |
adapter_name_or_path = ",".join( | |
[ | |
get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter) | |
for adapter in get("top.adapter_path") | |
] | |
) | |
else: | |
adapter_name_or_path = None | |
args = dict( | |
stage=TRAINING_STAGES[get("train.training_stage")], | |
do_train=True, | |
model_name_or_path=get("top.model_path"), | |
adapter_name_or_path=adapter_name_or_path, | |
cache_dir=user_config.get("cache_dir", None), | |
finetuning_type=get("top.finetuning_type"), | |
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, | |
template=get("top.template"), | |
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, | |
flash_attn=(get("top.booster") == "flash_attn"), | |
use_unsloth=(get("top.booster") == "unsloth"), | |
dataset_dir=get("train.dataset_dir"), | |
dataset=",".join(get("train.dataset")), | |
cutoff_len=get("train.cutoff_len"), | |
learning_rate=float(get("train.learning_rate")), | |
num_train_epochs=float(get("train.num_train_epochs")), | |
max_samples=int(get("train.max_samples")), | |
per_device_train_batch_size=get("train.batch_size"), | |
gradient_accumulation_steps=get("train.gradient_accumulation_steps"), | |
lr_scheduler_type=get("train.lr_scheduler_type"), | |
max_grad_norm=float(get("train.max_grad_norm")), | |
logging_steps=get("train.logging_steps"), | |
save_steps=get("train.save_steps"), | |
warmup_steps=get("train.warmup_steps"), | |
neftune_noise_alpha=get("train.neftune_alpha") or None, | |
sft_packing=get("train.sft_packing"), | |
upcast_layernorm=get("train.upcast_layernorm"), | |
lora_rank=get("train.lora_rank"), | |
lora_dropout=get("train.lora_dropout"), | |
lora_target=get("train.lora_target") or get_module(get("top.model_name")), | |
additional_target=get("train.additional_target") or None, | |
create_new_adapter=get("train.create_new_adapter"), | |
output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir")), | |
fp16=(get("train.compute_type") == "fp16"), | |
bf16=(get("train.compute_type") == "bf16"), | |
) | |
args["disable_tqdm"] = True | |
if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]: | |
args["create_new_adapter"] = args["quantization_bit"] is None | |
if args["stage"] == "ppo": | |
args["reward_model"] = get_save_dir( | |
get("top.model_name"), get("top.finetuning_type"), get("train.reward_model") | |
) | |
args["reward_model_type"] = "lora" if get("top.finetuning_type") == "lora" else "full" | |
if args["stage"] == "dpo": | |
args["dpo_beta"] = get("train.dpo_beta") | |
args["dpo_ftx"] = get("train.dpo_ftx") | |
if get("train.val_size") > 1e-6 and args["stage"] != "ppo": | |
args["val_size"] = get("train.val_size") | |
args["evaluation_strategy"] = "steps" | |
args["eval_steps"] = get("train.save_steps") | |
args["load_best_model_at_end"] = True | |
return args | |
def _parse_eval_args(self, data: Dict[Component, Any]) -> Dict[str, Any]: | |
get = lambda name: data[self.manager.get_elem_by_name(name)] | |
user_config = load_config() | |
if get("top.adapter_path"): | |
adapter_name_or_path = ",".join( | |
[ | |
get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter) | |
for adapter in get("top.adapter_path") | |
] | |
) | |
else: | |
adapter_name_or_path = None | |
args = dict( | |
stage="sft", | |
model_name_or_path=get("top.model_path"), | |
adapter_name_or_path=adapter_name_or_path, | |
cache_dir=user_config.get("cache_dir", None), | |
finetuning_type=get("top.finetuning_type"), | |
quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, | |
template=get("top.template"), | |
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, | |
flash_attn=(get("top.booster") == "flash_attn"), | |
use_unsloth=(get("top.booster") == "unsloth"), | |
dataset_dir=get("eval.dataset_dir"), | |
dataset=",".join(get("eval.dataset")), | |
cutoff_len=get("eval.cutoff_len"), | |
max_samples=int(get("eval.max_samples")), | |
per_device_eval_batch_size=get("eval.batch_size"), | |
predict_with_generate=True, | |
max_new_tokens=get("eval.max_new_tokens"), | |
top_p=get("eval.top_p"), | |
temperature=get("eval.temperature"), | |
output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("eval.output_dir")), | |
) | |
if get("eval.predict"): | |
args["do_predict"] = True | |
else: | |
args["do_eval"] = True | |
return args | |
def _preview( | |
self, data: Dict[Component, Any], do_train: bool | |
) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
error = self._initialize(data, do_train, from_preview=True) | |
if error: | |
gr.Warning(error) | |
yield error, gr.update(visible=False) | |
else: | |
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) | |
yield gen_cmd(args), gr.update(visible=False) | |
def _launch(self, data: Dict[Component, Any], do_train: bool) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
error = self._initialize(data, do_train, from_preview=False) | |
if error: | |
gr.Warning(error) | |
yield error, gr.update(visible=False) | |
else: | |
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) | |
run_kwargs = dict(args=args, callbacks=[self.trainer_callback]) | |
self.do_train, self.running_data = do_train, data | |
self.thread = Thread(target=run_exp, kwargs=run_kwargs) | |
self.thread.start() | |
yield from self.monitor() | |
def preview_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
yield from self._preview(data, do_train=True) | |
def preview_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
yield from self._preview(data, do_train=False) | |
def run_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
yield from self._launch(data, do_train=True) | |
def run_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
yield from self._launch(data, do_train=False) | |
def monitor(self) -> Generator[Tuple[str, Dict[str, Any]], None, None]: | |
get = lambda name: self.running_data[self.manager.get_elem_by_name(name)] | |
self.running = True | |
lang = get("top.lang") | |
output_dir = get_save_dir( | |
get("top.model_name"), | |
get("top.finetuning_type"), | |
get("{}.output_dir".format("train" if self.do_train else "eval")), | |
) | |
while self.thread.is_alive(): | |
time.sleep(2) | |
if self.aborted: | |
yield ALERTS["info_aborting"][lang], gr.update(visible=False) | |
else: | |
yield self.logger_handler.log, update_process_bar(self.trainer_callback) | |
if self.do_train: | |
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)): | |
finish_info = ALERTS["info_finished"][lang] | |
else: | |
finish_info = ALERTS["err_failed"][lang] | |
else: | |
if os.path.exists(os.path.join(output_dir, "all_results.json")): | |
finish_info = get_eval_results(os.path.join(output_dir, "all_results.json")) | |
else: | |
finish_info = ALERTS["err_failed"][lang] | |
yield self._finalize(lang, finish_info), gr.update(visible=False) | |