File size: 11,388 Bytes
20076b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import logging
import os
import time
from threading import Thread
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional, Tuple

import gradio as gr
import transformers
from gradio.components import Component  # cannot use TYPE_CHECKING here
from transformers.trainer import TRAINING_ARGS_NAME

from ..extras.callbacks import LogCallback
from ..extras.constants import TRAINING_STAGES
from ..extras.logging import LoggerHandler
from ..extras.misc import get_device_count, torch_gc
from ..train import run_exp
from .common import get_module, get_save_dir, load_config
from .locales import ALERTS
from .utils import gen_cmd, get_eval_results, update_process_bar


if TYPE_CHECKING:
    from .manager import Manager


class Runner:
    def __init__(self, manager: "Manager", demo_mode: Optional[bool] = False) -> None:
        self.manager = manager
        self.demo_mode = demo_mode
        """ Resume """
        self.thread: "Thread" = None
        self.do_train = True
        self.running_data: Dict["Component", Any] = None
        """ State """
        self.aborted = False
        self.running = False
        """ Handler """
        self.logger_handler = LoggerHandler()
        self.logger_handler.setLevel(logging.INFO)
        logging.root.addHandler(self.logger_handler)
        transformers.logging.add_handler(self.logger_handler)

    @property
    def alive(self) -> bool:
        return self.thread is not None

    def set_abort(self) -> None:
        self.aborted = True

    def _initialize(self, data: Dict[Component, Any], do_train: bool, from_preview: bool) -> str:
        get = lambda name: data[self.manager.get_elem_by_name(name)]
        lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path")
        dataset = get("train.dataset") if do_train else get("eval.dataset")

        if self.running:
            return ALERTS["err_conflict"][lang]

        if not model_name:
            return ALERTS["err_no_model"][lang]

        if not model_path:
            return ALERTS["err_no_path"][lang]

        if len(dataset) == 0:
            return ALERTS["err_no_dataset"][lang]

        if self.demo_mode and (not from_preview):
            return ALERTS["err_demo"][lang]

        if not from_preview and get_device_count() > 1:
            return ALERTS["err_device_count"][lang]

        self.aborted = False
        self.logger_handler.reset()
        self.trainer_callback = LogCallback(self)
        return ""

    def _finalize(self, lang: str, finish_info: str) -> str:
        self.thread = None
        self.running_data = None
        self.running = False
        torch_gc()
        if self.aborted:
            return ALERTS["info_aborted"][lang]
        else:
            return finish_info

    def _parse_train_args(self, data: Dict[Component, Any]) -> Dict[str, Any]:
        get = lambda name: data[self.manager.get_elem_by_name(name)]
        user_config = load_config()

        if get("top.adapter_path"):
            adapter_name_or_path = ",".join(
                [
                    get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
                    for adapter in get("top.adapter_path")
                ]
            )
        else:
            adapter_name_or_path = None

        args = dict(
            stage=TRAINING_STAGES[get("train.training_stage")],
            do_train=True,
            model_name_or_path=get("top.model_path"),
            adapter_name_or_path=adapter_name_or_path,
            cache_dir=user_config.get("cache_dir", None),
            finetuning_type=get("top.finetuning_type"),
            quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
            flash_attn=(get("top.booster") == "flash_attn"),
            use_unsloth=(get("top.booster") == "unsloth"),
            dataset_dir=get("train.dataset_dir"),
            dataset=",".join(get("train.dataset")),
            cutoff_len=get("train.cutoff_len"),
            learning_rate=float(get("train.learning_rate")),
            num_train_epochs=float(get("train.num_train_epochs")),
            max_samples=int(get("train.max_samples")),
            per_device_train_batch_size=get("train.batch_size"),
            gradient_accumulation_steps=get("train.gradient_accumulation_steps"),
            lr_scheduler_type=get("train.lr_scheduler_type"),
            max_grad_norm=float(get("train.max_grad_norm")),
            logging_steps=get("train.logging_steps"),
            save_steps=get("train.save_steps"),
            warmup_steps=get("train.warmup_steps"),
            neftune_noise_alpha=get("train.neftune_alpha") or None,
            sft_packing=get("train.sft_packing"),
            upcast_layernorm=get("train.upcast_layernorm"),
            lora_rank=get("train.lora_rank"),
            lora_dropout=get("train.lora_dropout"),
            lora_target=get("train.lora_target") or get_module(get("top.model_name")),
            additional_target=get("train.additional_target") or None,
            create_new_adapter=get("train.create_new_adapter"),
            output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("train.output_dir")),
            fp16=(get("train.compute_type") == "fp16"),
            bf16=(get("train.compute_type") == "bf16"),
        )
        args["disable_tqdm"] = True

        if TRAINING_STAGES[get("train.training_stage")] in ["rm", "ppo", "dpo"]:
            args["create_new_adapter"] = args["quantization_bit"] is None

        if args["stage"] == "ppo":
            args["reward_model"] = get_save_dir(
                get("top.model_name"), get("top.finetuning_type"), get("train.reward_model")
            )
            args["reward_model_type"] = "lora" if get("top.finetuning_type") == "lora" else "full"

        if args["stage"] == "dpo":
            args["dpo_beta"] = get("train.dpo_beta")
            args["dpo_ftx"] = get("train.dpo_ftx")

        if get("train.val_size") > 1e-6 and args["stage"] != "ppo":
            args["val_size"] = get("train.val_size")
            args["evaluation_strategy"] = "steps"
            args["eval_steps"] = get("train.save_steps")
            args["load_best_model_at_end"] = True

        return args

    def _parse_eval_args(self, data: Dict[Component, Any]) -> Dict[str, Any]:
        get = lambda name: data[self.manager.get_elem_by_name(name)]
        user_config = load_config()

        if get("top.adapter_path"):
            adapter_name_or_path = ",".join(
                [
                    get_save_dir(get("top.model_name"), get("top.finetuning_type"), adapter)
                    for adapter in get("top.adapter_path")
                ]
            )
        else:
            adapter_name_or_path = None

        args = dict(
            stage="sft",
            model_name_or_path=get("top.model_path"),
            adapter_name_or_path=adapter_name_or_path,
            cache_dir=user_config.get("cache_dir", None),
            finetuning_type=get("top.finetuning_type"),
            quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None,
            template=get("top.template"),
            rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
            flash_attn=(get("top.booster") == "flash_attn"),
            use_unsloth=(get("top.booster") == "unsloth"),
            dataset_dir=get("eval.dataset_dir"),
            dataset=",".join(get("eval.dataset")),
            cutoff_len=get("eval.cutoff_len"),
            max_samples=int(get("eval.max_samples")),
            per_device_eval_batch_size=get("eval.batch_size"),
            predict_with_generate=True,
            max_new_tokens=get("eval.max_new_tokens"),
            top_p=get("eval.top_p"),
            temperature=get("eval.temperature"),
            output_dir=get_save_dir(get("top.model_name"), get("top.finetuning_type"), get("eval.output_dir")),
        )

        if get("eval.predict"):
            args["do_predict"] = True
        else:
            args["do_eval"] = True

        return args

    def _preview(
        self, data: Dict[Component, Any], do_train: bool
    ) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        error = self._initialize(data, do_train, from_preview=True)
        if error:
            gr.Warning(error)
            yield error, gr.update(visible=False)
        else:
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
            yield gen_cmd(args), gr.update(visible=False)

    def _launch(self, data: Dict[Component, Any], do_train: bool) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        error = self._initialize(data, do_train, from_preview=False)
        if error:
            gr.Warning(error)
            yield error, gr.update(visible=False)
        else:
            args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
            run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
            self.do_train, self.running_data = do_train, data
            self.thread = Thread(target=run_exp, kwargs=run_kwargs)
            self.thread.start()
            yield from self.monitor()

    def preview_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        yield from self._preview(data, do_train=True)

    def preview_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        yield from self._preview(data, do_train=False)

    def run_train(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        yield from self._launch(data, do_train=True)

    def run_eval(self, data: Dict[Component, Any]) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        yield from self._launch(data, do_train=False)

    def monitor(self) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        get = lambda name: self.running_data[self.manager.get_elem_by_name(name)]
        self.running = True
        lang = get("top.lang")
        output_dir = get_save_dir(
            get("top.model_name"),
            get("top.finetuning_type"),
            get("{}.output_dir".format("train" if self.do_train else "eval")),
        )

        while self.thread.is_alive():
            time.sleep(2)
            if self.aborted:
                yield ALERTS["info_aborting"][lang], gr.update(visible=False)
            else:
                yield self.logger_handler.log, update_process_bar(self.trainer_callback)

        if self.do_train:
            if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
                finish_info = ALERTS["info_finished"][lang]
            else:
                finish_info = ALERTS["err_failed"][lang]
        else:
            if os.path.exists(os.path.join(output_dir, "all_results.json")):
                finish_info = get_eval_results(os.path.join(output_dir, "all_results.json"))
            else:
                finish_info = ALERTS["err_failed"][lang]

        yield self._finalize(lang, finish_info), gr.update(visible=False)