Spaces:
Runtime error
Runtime error
import json | |
import os | |
from collections import defaultdict | |
from typing import Any, Dict, Optional | |
import gradio as gr | |
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME | |
from ..extras.constants import ( | |
DATA_CONFIG, | |
DEFAULT_MODULE, | |
DEFAULT_TEMPLATE, | |
PEFT_METHODS, | |
SUPPORTED_MODELS, | |
TRAINING_STAGES, | |
DownloadSource, | |
) | |
from ..extras.misc import use_modelscope | |
ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME} | |
DEFAULT_CACHE_DIR = "cache" | |
DEFAULT_DATA_DIR = "data" | |
DEFAULT_SAVE_DIR = "saves" | |
USER_CONFIG = "user.config" | |
def get_save_dir(*args) -> os.PathLike: | |
return os.path.join(DEFAULT_SAVE_DIR, *args) | |
def get_config_path() -> os.PathLike: | |
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) | |
def load_config() -> Dict[str, Any]: | |
try: | |
with open(get_config_path(), "r", encoding="utf-8") as f: | |
return json.load(f) | |
except Exception: | |
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} | |
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: | |
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) | |
user_config = load_config() | |
user_config["lang"] = lang or user_config["lang"] | |
if model_name: | |
user_config["last_model"] = model_name | |
user_config["path_dict"][model_name] = model_path | |
with open(get_config_path(), "w", encoding="utf-8") as f: | |
json.dump(user_config, f, indent=2, ensure_ascii=False) | |
def get_model_path(model_name: str) -> str: | |
user_config = load_config() | |
path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) | |
model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, None) | |
if ( | |
use_modelscope() | |
and path_dict.get(DownloadSource.MODELSCOPE) | |
and model_path == path_dict.get(DownloadSource.DEFAULT) | |
): # replace path | |
model_path = path_dict.get(DownloadSource.MODELSCOPE) | |
return model_path | |
def get_prefix(model_name: str) -> str: | |
return model_name.split("-")[0] | |
def get_module(model_name: str) -> str: | |
return DEFAULT_MODULE.get(get_prefix(model_name), "q_proj,v_proj") | |
def get_template(model_name: str) -> str: | |
if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE: | |
return DEFAULT_TEMPLATE[get_prefix(model_name)] | |
return "default" | |
def list_adapters(model_name: str, finetuning_type: str) -> Dict[str, Any]: | |
if finetuning_type not in PEFT_METHODS: | |
return gr.update(value=[], choices=[], interactive=False) | |
adapters = [] | |
if model_name and finetuning_type == "lora": | |
save_dir = get_save_dir(model_name, finetuning_type) | |
if save_dir and os.path.isdir(save_dir): | |
for adapter in os.listdir(save_dir): | |
if os.path.isdir(os.path.join(save_dir, adapter)) and any( | |
os.path.isfile(os.path.join(save_dir, adapter, name)) for name in ADAPTER_NAMES | |
): | |
adapters.append(adapter) | |
return gr.update(value=[], choices=adapters, interactive=True) | |
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: | |
try: | |
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: | |
return json.load(f) | |
except Exception as err: | |
print("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err))) | |
return {} | |
def list_dataset( | |
dataset_dir: Optional[str] = None, training_stage: Optional[str] = list(TRAINING_STAGES.keys())[0] | |
) -> Dict[str, Any]: | |
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) | |
ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"] | |
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] | |
return gr.update(value=[], choices=datasets) | |