import json import os from collections import defaultdict from typing import Any, Dict, Optional import gradio as gr from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME from ..extras.constants import ( DATA_CONFIG, DEFAULT_MODULE, DEFAULT_TEMPLATE, PEFT_METHODS, SUPPORTED_MODELS, TRAINING_STAGES, DownloadSource, ) from ..extras.misc import use_modelscope ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME} DEFAULT_CACHE_DIR = "cache" DEFAULT_DATA_DIR = "data" DEFAULT_SAVE_DIR = "saves" USER_CONFIG = "user.config" def get_save_dir(*args) -> os.PathLike: return os.path.join(DEFAULT_SAVE_DIR, *args) def get_config_path() -> os.PathLike: return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) def load_config() -> Dict[str, Any]: try: with open(get_config_path(), "r", encoding="utf-8") as f: return json.load(f) except Exception: return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) user_config = load_config() user_config["lang"] = lang or user_config["lang"] if model_name: user_config["last_model"] = model_name user_config["path_dict"][model_name] = model_path with open(get_config_path(), "w", encoding="utf-8") as f: json.dump(user_config, f, indent=2, ensure_ascii=False) def get_model_path(model_name: str) -> str: user_config = load_config() path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, None) if ( use_modelscope() and path_dict.get(DownloadSource.MODELSCOPE) and model_path == path_dict.get(DownloadSource.DEFAULT) ): # replace path model_path = path_dict.get(DownloadSource.MODELSCOPE) return model_path def get_prefix(model_name: str) -> str: return model_name.split("-")[0] def get_module(model_name: str) -> str: return DEFAULT_MODULE.get(get_prefix(model_name), "q_proj,v_proj") def get_template(model_name: str) -> str: if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE: return DEFAULT_TEMPLATE[get_prefix(model_name)] return "default" def list_adapters(model_name: str, finetuning_type: str) -> Dict[str, Any]: if finetuning_type not in PEFT_METHODS: return gr.update(value=[], choices=[], interactive=False) adapters = [] if model_name and finetuning_type == "lora": save_dir = get_save_dir(model_name, finetuning_type) if save_dir and os.path.isdir(save_dir): for adapter in os.listdir(save_dir): if os.path.isdir(os.path.join(save_dir, adapter)) and any( os.path.isfile(os.path.join(save_dir, adapter, name)) for name in ADAPTER_NAMES ): adapters.append(adapter) return gr.update(value=[], choices=adapters, interactive=True) def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: try: with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: return json.load(f) except Exception as err: print("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err))) return {} def list_dataset( dataset_dir: Optional[str] = None, training_stage: Optional[str] = list(TRAINING_STAGES.keys())[0] ) -> Dict[str, Any]: dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"] datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] return gr.update(value=[], choices=datasets)