Spaces:
Running
Running
| import inspect | |
| import logging | |
| from typing import Optional | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.nn.init as init | |
| from diffusers.models.attention_processor import Attention as AttentionBase | |
| from diffusers.models.attention_processor import AttnProcessor2_0 as AttnProcessor2_0_Base, SpatialNorm, AttnProcessor | |
| from diffusers.models.attention_processor import IPAdapterAttnProcessor2_0 as IPAdapterAttnProcessor2_0_Base | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| logger = logging.getLogger(__name__) | |
| class Attention(AttentionBase): | |
| r""" | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (`int`): | |
| The number of channels in the query. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
| heads (`int`, *optional*, defaults to 8): | |
| The number of heads to use for multi-head attention. | |
| kv_heads (`int`, *optional*, defaults to `None`): | |
| The number of key and value heads to use for multi-head attention. Defaults to `heads`. If | |
| `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi | |
| Query Attention (MQA) otherwise GQA is used. | |
| dim_head (`int`, *optional*, defaults to 64): | |
| The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| bias (`bool`, *optional*, defaults to False): | |
| Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
| upcast_attention (`bool`, *optional*, defaults to False): | |
| Set to `True` to upcast the attention computation to `float32`. | |
| upcast_softmax (`bool`, *optional*, defaults to False): | |
| Set to `True` to upcast the softmax computation to `float32`. | |
| cross_attention_norm (`str`, *optional*, defaults to `None`): | |
| The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
| cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use for the group norm in the cross attention. | |
| added_kv_proj_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels to use for the added key and value projections. If `None`, no projection is used. | |
| norm_num_groups (`int`, *optional*, defaults to `None`): | |
| The number of groups to use for the group norm in the attention. | |
| spatial_norm_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels to use for the spatial normalization. | |
| out_bias (`bool`, *optional*, defaults to `True`): | |
| Set to `True` to use a bias in the output linear layer. | |
| scale_qk (`bool`, *optional*, defaults to `True`): | |
| Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | |
| only_cross_attention (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | |
| `added_kv_proj_dim` is not `None`. | |
| eps (`float`, *optional*, defaults to 1e-5): | |
| An additional value added to the denominator in group normalization that is used for numerical stability. | |
| rescale_output_factor (`float`, *optional*, defaults to 1.0): | |
| A factor to rescale the output by dividing it with this value. | |
| residual_connection (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to add the residual connection to the output. | |
| _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | |
| Set to `True` if the attention block is loaded from a deprecated state dict. | |
| processor (`AttnProcessor`, *optional*, defaults to `None`): | |
| The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | |
| `AttnProcessor` otherwise. | |
| """ | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| kv_heads: Optional[int] = None, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias: bool = False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| cross_attention_norm: Optional[str] = None, | |
| cross_attention_norm_num_groups: int = 32, | |
| qk_norm: Optional[str] = None, | |
| added_kv_proj_dim: Optional[int] = None, | |
| added_proj_bias: Optional[bool] = True, | |
| norm_num_groups: Optional[int] = None, | |
| spatial_norm_dim: Optional[int] = None, | |
| out_bias: bool = True, | |
| scale_qk: bool = True, | |
| only_cross_attention: bool = False, | |
| eps: float = 1e-5, | |
| rescale_output_factor: float = 1.0, | |
| residual_connection: bool = False, | |
| _from_deprecated_attn_block: bool = False, | |
| processor: Optional["AttnProcessor"] = None, | |
| out_dim: int = None, | |
| context_pre_only=None, | |
| pre_only=False, | |
| ): | |
| nn.Module.__init__(self) | |
| # To prevent circular import. | |
| from diffusers.models.normalization import FP32LayerNorm, RMSNorm | |
| self.inner_dim = out_dim if out_dim is not None else dim_head * heads | |
| self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads | |
| self.query_dim = query_dim | |
| self.use_bias = bias | |
| self.is_cross_attention = cross_attention_dim is not None | |
| self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.rescale_output_factor = rescale_output_factor | |
| self.residual_connection = residual_connection | |
| self.dropout = dropout | |
| self.fused_projections = False | |
| self.out_dim = out_dim if out_dim is not None else query_dim | |
| self.context_pre_only = context_pre_only | |
| self.pre_only = pre_only | |
| # we make use of this private variable to know whether this class is loaded | |
| # with an deprecated state dict so that we can convert it on the fly | |
| self._from_deprecated_attn_block = _from_deprecated_attn_block | |
| self.scale_qk = scale_qk | |
| self.scale = dim_head ** -0.5 if self.scale_qk else 1.0 | |
| self.heads = out_dim // dim_head if out_dim is not None else heads | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| self.only_cross_attention = only_cross_attention | |
| if self.added_kv_proj_dim is None and self.only_cross_attention: | |
| raise ValueError( | |
| "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
| ) | |
| if norm_num_groups is not None: | |
| self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
| else: | |
| self.group_norm = None | |
| if spatial_norm_dim is not None: | |
| self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
| else: | |
| self.spatial_norm = None | |
| if qk_norm is None: | |
| self.norm_q = None | |
| self.norm_k = None | |
| elif qk_norm == "layer_norm": | |
| self.norm_q = nn.LayerNorm(dim_head, eps=eps) | |
| self.norm_k = nn.LayerNorm(dim_head, eps=eps) | |
| elif qk_norm == "fp32_layer_norm": | |
| self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) | |
| self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) | |
| elif qk_norm == "layer_norm_across_heads": | |
| # Lumina applys qk norm across all heads | |
| self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps) | |
| self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps) | |
| elif qk_norm == "rms_norm": | |
| self.norm_q = RMSNorm(dim_head, eps=eps) | |
| self.norm_k = RMSNorm(dim_head, eps=eps) | |
| else: | |
| raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'") | |
| if cross_attention_norm is None: | |
| self.norm_cross = None | |
| elif cross_attention_norm == "layer_norm": | |
| self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
| elif cross_attention_norm == "group_norm": | |
| if self.added_kv_proj_dim is not None: | |
| # The given `encoder_hidden_states` are initially of shape | |
| # (batch_size, seq_len, added_kv_proj_dim) before being projected | |
| # to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
| # before the projection, so we need to use `added_kv_proj_dim` as | |
| # the number of channels for the group norm. | |
| norm_cross_num_channels = added_kv_proj_dim | |
| else: | |
| norm_cross_num_channels = self.cross_attention_dim | |
| self.norm_cross = nn.GroupNorm( | |
| num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
| ) | |
| else: | |
| raise ValueError( | |
| f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
| ) | |
| self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) | |
| if not self.only_cross_attention: | |
| # only relevant for the `AddedKVProcessor` classes | |
| self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) | |
| self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) | |
| else: | |
| self.to_k = None | |
| self.to_v = None | |
| self.added_proj_bias = added_proj_bias | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) | |
| self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) | |
| if self.context_pre_only is not None: | |
| self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) | |
| if not self.pre_only: | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| if self.context_pre_only is not None and not self.context_pre_only: | |
| self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias) | |
| if qk_norm is not None and added_kv_proj_dim is not None: | |
| if qk_norm == "fp32_layer_norm": | |
| self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) | |
| self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) | |
| elif qk_norm == "rms_norm": | |
| self.norm_added_q = RMSNorm(dim_head, eps=eps) | |
| self.norm_added_k = RMSNorm(dim_head, eps=eps) | |
| else: | |
| self.norm_added_q = None | |
| self.norm_added_k = None | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| if processor is None: | |
| processor = ( | |
| AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| **cross_attention_kwargs, | |
| ) -> torch.Tensor: | |
| r""" | |
| The forward method of the `Attention` class. | |
| Args: | |
| hidden_states (`torch.Tensor`): | |
| The hidden states of the query. | |
| encoder_hidden_states (`torch.Tensor`, *optional*): | |
| The hidden states of the encoder. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| The attention mask to use. If `None`, no mask is applied. | |
| **cross_attention_kwargs: | |
| Additional keyword arguments to pass along to the cross attention. | |
| Returns: | |
| `torch.Tensor`: The output of the attention layer. | |
| """ | |
| # The `Attention` class can call different attention processors / attention functions | |
| # here we simply pass along all tensors to the selected processor class | |
| # For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
| return self.processor( | |
| self, | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| class AttnProcessor2_0(AttnProcessor2_0_Base): | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| temb: Optional[torch.Tensor] = None, | |
| flow_feature: Optional[torch.Tensor] = None, | |
| flow_scale: Optional[float] = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| old_attn = attn.scale | |
| attn.scale *= kwargs.get("attn_scale", 1.0) | |
| output = super().__call__( | |
| attn, | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| temb=temb, | |
| *args, | |
| **kwargs, | |
| ) | |
| attn.scale = old_attn | |
| return output | |
| class IPAdapterAttnProcessor2_0(IPAdapterAttnProcessor2_0_Base): | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| temb: Optional[torch.Tensor] = None, | |
| scale: float = 1.0, | |
| ip_adapter_masks: Optional[torch.Tensor] = None, | |
| flow_feature: Optional[torch.Tensor] = None, | |
| flow_scale: Optional[float] = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.Tensor: | |
| return super().__call__( | |
| attn=attn, | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| temb=temb, | |
| scale=scale, | |
| ip_adapter_masks=ip_adapter_masks, | |
| ) | |
| class FlowAdaptorAttnProcessor(nn.Module): | |
| def __init__(self, | |
| type: str, | |
| hidden_size, # dimension of hidden state | |
| flow_feature_dim=None, # dimension of the pose feature | |
| cross_attention_dim=None, # dimension of the text embedding | |
| query_condition=False, | |
| key_value_condition=False, | |
| flow_scale=1.0 | |
| ): | |
| super().__init__() | |
| self.type = type | |
| self.hidden_size = hidden_size | |
| self.flow_feature_dim = flow_feature_dim | |
| self.cross_attention_dim = cross_attention_dim | |
| self.flow_scale = flow_scale | |
| self.query_condition = query_condition | |
| self.key_value_condition = key_value_condition | |
| assert hidden_size == flow_feature_dim | |
| if self.query_condition and self.key_value_condition: | |
| self.qkv_merge = nn.Linear(hidden_size, hidden_size) | |
| init.zeros_(self.qkv_merge.weight) | |
| init.zeros_(self.qkv_merge.bias) | |
| elif self.query_condition: | |
| self.q_merge = nn.Linear(hidden_size, hidden_size) | |
| init.zeros_(self.q_merge.weight) | |
| init.zeros_(self.q_merge.bias) | |
| else: | |
| self.kv_merge = nn.Linear(hidden_size, hidden_size) | |
| init.zeros_(self.kv_merge.weight) | |
| init.zeros_(self.kv_merge.bias) | |
| def forward(self, | |
| attn: Attention, | |
| hidden_states, | |
| flow_feature, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| temb=None, | |
| flow_scale=None, | |
| *args, | |
| **kwargs, | |
| ): | |
| assert flow_feature is not None | |
| flow_embedding_scale = (flow_scale if flow_scale is not None else self.flow_scale) | |
| residual = hidden_states | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| if self.query_condition and self.key_value_condition: | |
| assert encoder_hidden_states is None | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| if attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| if self.query_condition and self.key_value_condition: # only self attention | |
| query_hidden_state = self.qkv_merge(hidden_states + flow_feature) * flow_embedding_scale + hidden_states | |
| key_value_hidden_state = query_hidden_state | |
| elif self.query_condition: | |
| query_hidden_state = self.q_merge(hidden_states + flow_feature) * flow_embedding_scale + hidden_states | |
| key_value_hidden_state = encoder_hidden_states | |
| else: | |
| key_value_hidden_state = self.kv_merge( | |
| encoder_hidden_states + flow_feature) * flow_embedding_scale + encoder_hidden_states | |
| query_hidden_state = hidden_states | |
| # original attention | |
| key = attn.to_k(key_value_hidden_state) | |
| value = attn.to_v(key_value_hidden_state) | |
| query = attn.to_q(query_hidden_state) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, | |
| attn_mask=attention_mask, | |
| dropout_p=0.0, | |
| is_causal=False, | |
| scale=attn.scale * kwargs.get("attn_scale_flow", 1.0), | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |