File size: 20,438 Bytes
9bb001a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import inspect
import logging
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from diffusers.models.attention_processor import Attention as AttentionBase
from diffusers.models.attention_processor import AttnProcessor2_0 as AttnProcessor2_0_Base, SpatialNorm, AttnProcessor
from diffusers.models.attention_processor import IPAdapterAttnProcessor2_0 as IPAdapterAttnProcessor2_0_Base
from diffusers.utils.torch_utils import maybe_allow_in_graph

logger = logging.getLogger(__name__)


@maybe_allow_in_graph
class Attention(AttentionBase):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (`int`):
            The number of channels in the query.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
        kv_heads (`int`,  *optional*, defaults to `None`):
            The number of key and value heads to use for multi-head attention. Defaults to `heads`. If
            `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi
            Query Attention (MQA) otherwise GQA is used.
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
    """

    def __init__(
            self,
            query_dim: int,
            cross_attention_dim: Optional[int] = None,
            heads: int = 8,
            kv_heads: Optional[int] = None,
            dim_head: int = 64,
            dropout: float = 0.0,
            bias: bool = False,
            upcast_attention: bool = False,
            upcast_softmax: bool = False,
            cross_attention_norm: Optional[str] = None,
            cross_attention_norm_num_groups: int = 32,
            qk_norm: Optional[str] = None,
            added_kv_proj_dim: Optional[int] = None,
            added_proj_bias: Optional[bool] = True,
            norm_num_groups: Optional[int] = None,
            spatial_norm_dim: Optional[int] = None,
            out_bias: bool = True,
            scale_qk: bool = True,
            only_cross_attention: bool = False,
            eps: float = 1e-5,
            rescale_output_factor: float = 1.0,
            residual_connection: bool = False,
            _from_deprecated_attn_block: bool = False,
            processor: Optional["AttnProcessor"] = None,
            out_dim: int = None,
            context_pre_only=None,
            pre_only=False,
    ):
        nn.Module.__init__(self)

        # To prevent circular import.
        from diffusers.models.normalization import FP32LayerNorm, RMSNorm

        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
        self.query_dim = query_dim
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
        self.dropout = dropout
        self.fused_projections = False
        self.out_dim = out_dim if out_dim is not None else query_dim
        self.context_pre_only = context_pre_only
        self.pre_only = pre_only

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block

        self.scale_qk = scale_qk
        self.scale = dim_head ** -0.5 if self.scale_qk else 1.0

        self.heads = out_dim // dim_head if out_dim is not None else heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )

        if norm_num_groups is not None:
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
        else:
            self.group_norm = None

        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

        if qk_norm is None:
            self.norm_q = None
            self.norm_k = None
        elif qk_norm == "layer_norm":
            self.norm_q = nn.LayerNorm(dim_head, eps=eps)
            self.norm_k = nn.LayerNorm(dim_head, eps=eps)
        elif qk_norm == "fp32_layer_norm":
            self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
            self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
        elif qk_norm == "layer_norm_across_heads":
            # Lumina applys qk norm across all heads
            self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps)
            self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps)
        elif qk_norm == "rms_norm":
            self.norm_q = RMSNorm(dim_head, eps=eps)
            self.norm_k = RMSNorm(dim_head, eps=eps)
        else:
            raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")

        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
                norm_cross_num_channels = self.cross_attention_dim

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )

        self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
            self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias)
            self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias)
        else:
            self.to_k = None
            self.to_v = None

        self.added_proj_bias = added_proj_bias
        if self.added_kv_proj_dim is not None:
            self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
            if self.context_pre_only is not None:
                self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)

        if not self.pre_only:
            self.to_out = nn.ModuleList([])
            self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
            self.to_out.append(nn.Dropout(dropout))

        if self.context_pre_only is not None and not self.context_pre_only:
            self.to_add_out = nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)

        if qk_norm is not None and added_kv_proj_dim is not None:
            if qk_norm == "fp32_layer_norm":
                self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
                self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
            elif qk_norm == "rms_norm":
                self.norm_added_q = RMSNorm(dim_head, eps=eps)
                self.norm_added_k = RMSNorm(dim_head, eps=eps)
        else:
            self.norm_added_q = None
            self.norm_added_k = None

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

    def forward(
            self,
            hidden_states: torch.Tensor,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty

        return self.processor(
            self,
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )


class AttnProcessor2_0(AttnProcessor2_0_Base):
    def __call__(
            self,
            attn: Attention,
            hidden_states: torch.Tensor,
            encoder_hidden_states: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            temb: Optional[torch.Tensor] = None,
            flow_feature: Optional[torch.Tensor] = None,
            flow_scale: Optional[float] = None,
            *args,
            **kwargs,
    ) -> torch.Tensor:

        old_attn = attn.scale
        attn.scale *= kwargs.get("attn_scale", 1.0)

        output = super().__call__(
            attn,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            temb=temb,
            *args,
            **kwargs,
        )

        attn.scale = old_attn
        return output

class IPAdapterAttnProcessor2_0(IPAdapterAttnProcessor2_0_Base):
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.Tensor] = None,
        flow_feature: Optional[torch.Tensor] = None,
        flow_scale: Optional[float] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        return super().__call__(
            attn=attn,
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            temb=temb,
            scale=scale,
            ip_adapter_masks=ip_adapter_masks,
        )


class FlowAdaptorAttnProcessor(nn.Module):
    def __init__(self,
                 type: str,
                 hidden_size,  # dimension of hidden state
                 flow_feature_dim=None,  # dimension of the pose feature
                 cross_attention_dim=None,  # dimension of the text embedding
                 query_condition=False,
                 key_value_condition=False,
                 flow_scale=1.0
                 ):
        super().__init__()

        self.type = type
        self.hidden_size = hidden_size
        self.flow_feature_dim = flow_feature_dim
        self.cross_attention_dim = cross_attention_dim
        self.flow_scale = flow_scale
        self.query_condition = query_condition
        self.key_value_condition = key_value_condition
        assert hidden_size == flow_feature_dim
        if self.query_condition and self.key_value_condition:
            self.qkv_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.qkv_merge.weight)
            init.zeros_(self.qkv_merge.bias)
        elif self.query_condition:
            self.q_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.q_merge.weight)
            init.zeros_(self.q_merge.bias)
        else:
            self.kv_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.kv_merge.weight)
            init.zeros_(self.kv_merge.bias)

    def forward(self,
                attn: Attention,
                hidden_states,
                flow_feature,
                encoder_hidden_states=None,
                attention_mask=None,
                temb=None,
                flow_scale=None,
                *args,
                **kwargs,
                ):
        assert flow_feature is not None
        flow_embedding_scale = (flow_scale if flow_scale is not None else self.flow_scale)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        if self.query_condition and self.key_value_condition:
            assert encoder_hidden_states is None

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.query_condition and self.key_value_condition:  # only self attention
            query_hidden_state = self.qkv_merge(hidden_states + flow_feature) * flow_embedding_scale + hidden_states
            key_value_hidden_state = query_hidden_state
        elif self.query_condition:
            query_hidden_state = self.q_merge(hidden_states + flow_feature) * flow_embedding_scale + hidden_states
            key_value_hidden_state = encoder_hidden_states
        else:
            key_value_hidden_state = self.kv_merge(
                encoder_hidden_states + flow_feature) * flow_embedding_scale + encoder_hidden_states
            query_hidden_state = hidden_states

        # original attention
        key = attn.to_k(key_value_hidden_state)
        value = attn.to_v(key_value_hidden_state)
        query = attn.to_q(query_hidden_state)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value,
            attn_mask=attention_mask,
            dropout_p=0.0,
            is_causal=False,
            scale=attn.scale * kwargs.get("attn_scale_flow", 1.0),
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)

        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states