File size: 5,340 Bytes
d72e6ae
 
 
 
 
a3dd2de
d72e6ae
 
 
ddd8eee
de34e9c
3fa9d6e
b07f6c8
82ca3e9
a91f43b
5368800
5c49423
a3dd2de
d2b80b3
a3dd2de
d2b80b3
837ed4a
1f2defa
d72e6ae
 
57e78da
d72e6ae
 
 
 
 
 
 
 
86f46a1
d72e6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304de92
1f2defa
 
d72e6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f46a1
d72e6ae
 
 
86f46a1
 
d72e6ae
86f46a1
 
d72e6ae
ac383dd
d72e6ae
 
 
 
 
a3dd2de
 
 
837ed4a
67fdfd0
3baa40e
d72e6ae
a3dd2de
 
 
 
 
 
 
 
86f46a1
d72e6ae
 
 
 
 
 
88f2941
 
d72e6ae
d2ce25e
d72e6ae
 
 
 
 
1f2defa
 
 
 
 
1fbb83b
1f2defa
d72e6ae
1f2defa
d72e6ae
 
 
 
 
ac383dd
d72e6ae
 
1f2defa
d72e6ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os

import torch
import trl

from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast, AdamW, get_linear_schedule_with_warmup
from datasets import load_dataset
from tokenizers import ByteLevelBPETokenizer

MAX_SEQ_LENGTH = 512
BATCH_SIZE = 64
EPOCHS = 3
LEARNING_RATE = 2e-2
FACTOR = 256
VOCAB_SIZE = 32000
INPUT_DATASET = "nroggendorff/openhermes"
OUTPUT_REPO = "smallama"
FP16 = True
WARMUP_STEPS = 200
DECAY = 0.01
GRADIENT_ACCUMULATION_STEPS = 1
CLIPPING = 1.0
PUSH_TO_HUB = True

def load_data():
    dataset = load_dataset(INPUT_DATASET, split="train").select(range(int(2e+5)))
    return dataset

def create_tokenizer(training_corpus):
    tokenizer = ByteLevelBPETokenizer()
    tokenizer.train_from_iterator(
        training_corpus,
        vocab_size=VOCAB_SIZE,
        min_frequency=2,
        special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
    )

    fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
    return fast_tokenizer

def get_training_corpus(dataset):
    for i in range(0, len(dataset), 1000):
        yield dataset[i : i + 1000]["text"]

def format_prompts(examples, tokenizer):
    texts = []
    for text in examples['text']:
        conversation = []
        parts = text.split('<|end|>')
        for i in range(0, len(parts) - 1, 2):
            prompt = parts[i].replace("<|user|>", "")
            response = parts[i + 1].replace("<|bot|>", "")
            conversation.append({"role": "user", "content": prompt})
            conversation.append({"role": "assistant", "content": response})
        formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
        texts.append(formatted_conversation)
    return {"text": texts}

def create_model(tokenizer):
    config = LlamaConfig(
        vocab_size=tokenizer.vocab_size,
        hidden_size=FACTOR,
        intermediate_size=FACTOR * 4,
        num_hidden_layers=max(1, FACTOR // 32),
        num_attention_heads=max(1, FACTOR // 64),
        max_position_embeddings=MAX_SEQ_LENGTH,
        rms_norm_eps=1e-6,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        tie_word_embeddings=False,
    )
    
    model = LlamaForCausalLM(config)
    return model

def configure_tokenizer(tokenizer):
    special_tokens = {
        "bos_token": "<s>",
        "eos_token": "</s>",
        "unk_token": "<unk>",
        "pad_token": "<pad>",
        "mask_token": "<mask>",
        "additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
    }
    tokenizer.add_special_tokens(special_tokens)
    
    tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
    tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
    
    chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
    tokenizer.chat_template = chat_template

def train_model(model, tokenizer, dataset, push):
    args = TrainingArguments(
        output_dir="model",
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        optim="adamw_torch",
        warmup_steps=WARMUP_STEPS,
        weight_decay=DECAY,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        fp16=FP16,
        max_grad_norm=CLIPPING
    )

    optimizer = AdamW(model.parameters(), lr=args.learning_rate)
    scheduler = get_linear_schedule_with_warmup(
        optimizer, 
        num_warmup_steps=args.warmup_steps, 
        num_training_steps=len(dataset) * args.num_train_epochs // args.gradient_accumulation_steps
    )
    
    dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer), batched=True)
    trainer = trl.SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        args=args,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=MAX_SEQ_LENGTH,
        optimizers=(optimizer, scheduler)
    )
    
    trainer.train()
    
    trained_model = trainer.model
    trained_tokenizer = trainer.tokenizer
    
    if push:
        repo_id = OUTPUT_REPO
        trained_model.push_to_hub(repo_id)
        trained_tokenizer.push_to_hub(repo_id)
    else:
        trained_model.save_pretrained("model")
        trained_tokenizer.save_pretrained("tokenizer")

def main(push_to_hub=True):
    dataset = load_data()
    training_corpus = get_training_corpus(dataset)
    tokenizer = create_tokenizer(training_corpus)
    configure_tokenizer(tokenizer)
    model = create_model(tokenizer)
    train_model(model, tokenizer, dataset, push_to_hub)

if __name__ == "__main__":
    main(PUSH_TO_HUB)
    raise RuntimeError("The script is finished.")