Spaces:
Runtime error
Runtime error
File size: 6,135 Bytes
d72e6ae 84b97dd 5815d9f d72e6ae b525dbc b1e38e3 e010cb9 a1a8a8c 1523408 b1e38e3 c5cf0dd e2cf6d7 5c49423 bdd2a2c fc8b6df 1ca2977 a1a8a8c 1f2defa d72e6ae fc4a559 1848b96 b78c25f 1848b96 fc4a559 d72e6ae 86f46a1 d72e6ae fc4a559 d72e6ae fc4a559 d72e6ae fc4a559 d72e6ae 304de92 1f2defa d72e6ae 86f46a1 d72e6ae 86f46a1 d72e6ae fc4a559 86f46a1 d72e6ae fc4a559 d72e6ae a3dd2de 837ed4a 67fdfd0 e8700aa d72e6ae a3dd2de d0eec81 fc4a559 a3dd2de 84b97dd a3dd2de fc4a559 d72e6ae 88f2941 d72e6ae d2ce25e 31cd6e7 d72e6ae 1f2defa 31cd6e7 fc4a559 1f2defa 1fbb83b 1f2defa d72e6ae 1f2defa d72e6ae fc4a559 d72e6ae fc4a559 d72e6ae 1f2defa d72e6ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import torch
import trl
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
from datasets import load_dataset, DatasetDict, Dataset
from tokenizers import ByteLevelBPETokenizer
MAX_SEQ_LENGTH = 128
BATCH_SIZE = 16
EPOCHS = 2
LEARNING_RATE = 2e-4
FACTOR = 1024
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/openhermes"
OUTPUT_REPO = "smallama"
FP16 = False
WARMUP_STEPS = 0
DECAY = 0
GRADIENT_ACCUMULATION_STEPS = 16
PUSH_TO_HUB = True
def load_data():
pretrain = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
pretrain = Dataset.from_generator(lambda: pretrain.take(int(3e+5)))
instruct = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
instruct = Dataset.from_generator(lambda: instruct.take(int(5e+5)))
dataset_dict = DatasetDict({
'pretrain': pretrain,
'instruct': instruct
})
return dataset_dict
def create_tokenizer(training_corpus):
tokenizer = ByteLevelBPETokenizer()
tokenizer.train_from_iterator(
training_corpus,
vocab_size=VOCAB_SIZE,
min_frequency=2,
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
return fast_tokenizer
def get_training_corpus(dataset):
for i in range(0, len(dataset), 1000):
yield dataset[i : i + 1000]["text"]
def format_prompts(examples, tokenizer, isinst):
texts = []
for text in examples['text']:
if isinst:
conversation = []
parts = text.split('<|end|>')
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].replace("<|user|>", "")
response = parts[i + 1].replace("<|bot|>", "")
conversation.append({"role": "user", "content": prompt})
conversation.append({"role": "assistant", "content": response})
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
texts.append(formatted_conversation)
else:
texts.append(text)
return {"text": texts}
def create_model(tokenizer):
config = LlamaConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=FACTOR,
intermediate_size=FACTOR * 4,
num_hidden_layers=max(1, FACTOR // 32),
num_attention_heads=max(1, FACTOR // 64),
max_position_embeddings=MAX_SEQ_LENGTH,
rms_norm_eps=1e-6,
initializer_range=0.02,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
tie_word_embeddings=False,
)
model = LlamaForCausalLM(config)
return model
def configure_tokenizer(tokenizer):
special_tokens = {
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>",
"additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
}
tokenizer.add_special_tokens(special_tokens)
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
tokenizer.chat_template = chat_template
def train_model(model, tokenizer, dataset, push, isinst):
args = TrainingArguments(
output_dir="model",
num_train_epochs=EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
optim="adamw_torch",
warmup_steps=WARMUP_STEPS,
weight_decay=DECAY,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
fp16=FP16,
logging_steps=10
)
optimizer = AdamW(model.parameters(), lr=args.learning_rate)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
)
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
trainer = trl.SFTTrainer(
model=model,
tokenizer=tokenizer,
args=args,
train_dataset=dataset,
dataset_text_field='text',
max_seq_length=MAX_SEQ_LENGTH,
optimizers=(optimizer, scheduler)
)
train = trainer.train()
trained_model = trainer.model
trained_tokenizer = trainer.tokenizer
if push:
repo_id = OUTPUT_REPO
msg = str(train.training_loss)
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
else:
trained_model.save_pretrained("model")
trained_tokenizer.save_pretrained("tokenizer")
def main(push_to_hub=True):
dataset = load_data()
pretrain = dataset['pretrain']
instruct = dataset['instruct']
training_corpus = get_training_corpus(pretrain)
tokenizer = create_tokenizer(training_corpus)
configure_tokenizer(tokenizer)
model = create_model(tokenizer)
train_model(model, tokenizer, pretrain, False, False)
train_model(model, tokenizer, instruct, push_to_hub, True)
if __name__ == "__main__":
main(PUSH_TO_HUB)
raise RuntimeError("The script is finished.") |