File size: 6,266 Bytes
d72e6ae
 
 
 
 
84b97dd
5815d9f
d72e6ae
 
99ddef6
766757e
99ddef6
33af1c6
1523408
b1e38e3
c5cf0dd
fea8645
5c49423
bdd2a2c
98928b9
1ca2977
d92611d
1f2defa
d72e6ae
 
fc4a559
407a794
b78c25f
407a794
fc4a559
 
 
 
 
d72e6ae
 
 
 
 
 
 
86f46a1
d72e6ae
 
 
 
 
 
b8f77cf
 
 
 
 
 
d72e6ae
fc4a559
d72e6ae
 
fc4a559
 
 
 
 
 
 
 
 
 
 
aede1bb
d72e6ae
fc4a559
d72e6ae
 
 
 
 
304de92
1f2defa
 
d72e6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f46a1
d72e6ae
 
 
86f46a1
 
d72e6ae
fc4a559
86f46a1
d72e6ae
fc4a559
d72e6ae
 
 
 
 
a3dd2de
 
 
837ed4a
67fdfd0
e8700aa
d72e6ae
a3dd2de
 
d0eec81
fc4a559
a3dd2de
84b97dd
a3dd2de
fc4a559
d72e6ae
 
 
 
 
 
88f2941
 
d72e6ae
d2ce25e
31cd6e7
d72e6ae
 
 
 
1f2defa
 
31cd6e7
fc4a559
 
1f2defa
1fbb83b
1f2defa
d72e6ae
1f2defa
d72e6ae
fc4a559
 
b8f77cf
d72e6ae
 
 
fc4a559
 
d72e6ae
 
1f2defa
d72e6ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os

import torch
import trl

from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
from datasets import load_dataset, DatasetDict, Dataset
from tokenizers import ByteLevelBPETokenizer

MAX_SEQ_LENGTH = 512
BATCH_SIZE = 4
EPOCHS = 2
LEARNING_RATE = 2e-4
FACTOR = 1024
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "smallama"
FP16 = False
WARMUP_STEPS = 0
DECAY = 0
GRADIENT_ACCUMULATION_STEPS = 1
PUSH_TO_HUB = True

def load_data():
    pretrain = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
    pretrain = Dataset.from_generator(lambda: pretrain.take(int(3e+4)))
    instruct = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
    instruct = Dataset.from_generator(lambda: instruct.take(int(5e+4)))
    dataset_dict = DatasetDict({
        'pretrain': pretrain,
        'instruct': instruct
    })
    return dataset_dict

def create_tokenizer(training_corpus):
    tokenizer = ByteLevelBPETokenizer()
    tokenizer.train_from_iterator(
        training_corpus,
        vocab_size=VOCAB_SIZE,
        min_frequency=2,
        special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
    )

    fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
    return fast_tokenizer

def get_training_corpus(dataset):
    texts = []
    for field in ['pretrain', 'instruct']:
        texts.extend(dataset[field]['text'])

    for i in range(0, len(texts), 1000):
        yield texts[i : i + 1000]

def format_prompts(examples, tokenizer, isinst):
    texts = []
    for text in examples['text']:
        if isinst:
            conversation = []
            parts = text.split('<|end|>')
            for i in range(0, len(parts) - 1, 2):
                prompt = parts[i].replace("<|user|>", "")
                response = parts[i + 1].replace("<|bot|>", "")
                conversation.append({"role": "user", "content": prompt})
                conversation.append({"role": "assistant", "content": response})
            formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
            texts.append(formatted_conversation)
        else:
            texts.append(tokenizer.bos_token + text + tokenizer.eos_token)
    return {"text": texts}
            

def create_model(tokenizer):
    config = LlamaConfig(
        vocab_size=tokenizer.vocab_size,
        hidden_size=FACTOR,
        intermediate_size=FACTOR * 4,
        num_hidden_layers=max(1, FACTOR // 32),
        num_attention_heads=max(1, FACTOR // 64),
        max_position_embeddings=MAX_SEQ_LENGTH,
        rms_norm_eps=1e-6,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        tie_word_embeddings=False,
    )
    
    model = LlamaForCausalLM(config)
    return model

def configure_tokenizer(tokenizer):
    special_tokens = {
        "bos_token": "<s>",
        "eos_token": "</s>",
        "unk_token": "<unk>",
        "pad_token": "<pad>",
        "mask_token": "<mask>",
        "additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
    }
    tokenizer.add_special_tokens(special_tokens)
    
    tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
    tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
    
    chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
    tokenizer.chat_template = chat_template

def train_model(model, tokenizer, dataset, push, isinst):
    args = TrainingArguments(
        output_dir="model",
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        optim="adamw_torch",
        warmup_steps=WARMUP_STEPS,
        weight_decay=DECAY,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        fp16=FP16,
        logging_steps=10
    )

    optimizer = AdamW(model.parameters(), lr=args.learning_rate)
    scheduler = get_cosine_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps, 
        num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
    )
    dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
    trainer = trl.SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        args=args,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=MAX_SEQ_LENGTH,
        optimizers=(optimizer, scheduler)
    )
    
    train = trainer.train()
    
    trained_model = trainer.model
    trained_tokenizer = trainer.tokenizer
    
    if push:
        repo_id = OUTPUT_REPO
        msg = str(train.training_loss)
        trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
        trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
    else:
        trained_model.save_pretrained("model")
        trained_tokenizer.save_pretrained("tokenizer")

def main(push_to_hub=True):
    dataset = load_data()
    pretrain = dataset['pretrain']
    instruct = dataset['instruct']
    training_corpus = get_training_corpus(dataset)
    tokenizer = create_tokenizer(training_corpus)
    configure_tokenizer(tokenizer)
    model = create_model(tokenizer)
    train_model(model, tokenizer, pretrain, False, False)
    train_model(model, tokenizer, instruct, push_to_hub, True)

if __name__ == "__main__":
    main(PUSH_TO_HUB)
    raise RuntimeError("The script is finished.")