Spaces:
Sleeping
Sleeping
File size: 3,875 Bytes
dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c 50a46c7 dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 8959c8c dea28b2 e147156 8959c8c 4921ea7 e147156 4921ea7 8959c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import requests
import base64
from PIL import Image
import io
gr.set_page_config(page_title="AI Image Detector", page_icon="🔍")
gr.title("AI Image Detector")
gr.write("Upload an image to check if it's AI-generated")
api_key = "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"
gr.session_state.api_key = api_key
def process_image(image_bytes, api_key):
header_auth = f"Bearer {api_key}"
invoke_url = "https://ai.api.nvidia.com/v1/cv/hive/ai-generated-image-detection"
# Convert image bytes to base64
image_b64 = base64.b64encode(image_bytes).decode()
payload = {
"input": [f"data:image/png;base64,{image_b64}"]
}
headers = {
"Content-Type": "application/json",
"Authorization": header_auth,
"Accept": "application/json",
}
try:
response = requests.post(invoke_url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
# Check if response contains the expected structure
if 'data' in result and len(result['data']) > 0:
first_result = result['data'][0]
if 'is_ai_generated' in first_result:
return {
'confidence': first_result['is_ai_generated'],
'sources': first_result.get('possible_sources', {}),
'status': first_result.get('status', 'UNKNOWN')
}
gr.error("Unexpected response format from API")
return None
except requests.exceptions.RequestException as e:
gr.error(f"Error processing image: {str(e)}")
return None
# File uploader
uploaded_file = gr.file_uploader("Choose an image...", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None and api_key:
# Display the uploaded image
image = Image.open(uploaded_file)
gr.image(image, caption="Uploaded Image", use_container_width=True)
# Convert image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format=image.format)
img_byte_arr = img_byte_arr.getvalue()
# Process the image
with gr.spinner("Analyzing image..."):
result = process_image(img_byte_arr, api_key)
if result and result['status'] == 'SUCCESS':
confidence = result['confidence']
sources = result['sources']
gr.write("---")
gr.write("### Result")
# Determine if image is AI-generated (using 50% threshold)
is_ai_generated = "Yes" if confidence >= 0.5 else "No"
# Display result with appropriate styling
if is_ai_generated == "Yes":
gr.error(f"Is this image AI-generated? **{is_ai_generated}**")
# Show top 3 possible sources if AI-generated
if sources:
gr.write("Top possible AI models used:")
sorted_sources = sorted(sources.items(), key=lambda x: x[1], reverse=True)[:3]
for source, prob in sorted_sources:
if prob > 0.01: # Only show sources with >1% probability
gr.write(f"- {source}: {prob:.1%}")
else:
gr.success(f"Is this image AI-generated? **{is_ai_generated}**")
# Show confidence score in smaller text
gr.caption(f"Confidence score: {confidence:.2%}")
elif not api_key and uploaded_file is not None:
gr.warning("Please enter your NVIDIA API key first")
# Add footer with instructions
gr.markdown("---")
gr.markdown("""
---
### How to use:
1. Upload an image (PNG, JPG, or JPEG)
2. Wait for the analysis result
3. Get a ** Yes/No ** answer based on whether the image is AI-generated
""") |