Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
-
import
|
| 2 |
import requests
|
| 3 |
import base64
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
| 6 |
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
|
| 13 |
api_key = "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"
|
| 14 |
-
|
| 15 |
|
| 16 |
def process_image(image_bytes, api_key):
|
| 17 |
header_auth = f"Bearer {api_key}"
|
|
@@ -44,20 +44,20 @@ def process_image(image_bytes, api_key):
|
|
| 44 |
'status': first_result.get('status', 'UNKNOWN')
|
| 45 |
}
|
| 46 |
|
| 47 |
-
|
| 48 |
return None
|
| 49 |
|
| 50 |
except requests.exceptions.RequestException as e:
|
| 51 |
-
|
| 52 |
return None
|
| 53 |
|
| 54 |
# File uploader
|
| 55 |
-
uploaded_file =
|
| 56 |
|
| 57 |
if uploaded_file is not None and api_key:
|
| 58 |
# Display the uploaded image
|
| 59 |
image = Image.open(uploaded_file)
|
| 60 |
-
|
| 61 |
|
| 62 |
# Convert image to bytes
|
| 63 |
img_byte_arr = io.BytesIO()
|
|
@@ -65,42 +65,42 @@ if uploaded_file is not None and api_key:
|
|
| 65 |
img_byte_arr = img_byte_arr.getvalue()
|
| 66 |
|
| 67 |
# Process the image
|
| 68 |
-
with
|
| 69 |
result = process_image(img_byte_arr, api_key)
|
| 70 |
|
| 71 |
if result and result['status'] == 'SUCCESS':
|
| 72 |
confidence = result['confidence']
|
| 73 |
sources = result['sources']
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
# Determine if image is AI-generated (using 50% threshold)
|
| 79 |
is_ai_generated = "Yes" if confidence >= 0.5 else "No"
|
| 80 |
|
| 81 |
# Display result with appropriate styling
|
| 82 |
if is_ai_generated == "Yes":
|
| 83 |
-
|
| 84 |
|
| 85 |
# Show top 3 possible sources if AI-generated
|
| 86 |
if sources:
|
| 87 |
-
|
| 88 |
sorted_sources = sorted(sources.items(), key=lambda x: x[1], reverse=True)[:3]
|
| 89 |
for source, prob in sorted_sources:
|
| 90 |
if prob > 0.01: # Only show sources with >1% probability
|
| 91 |
-
|
| 92 |
else:
|
| 93 |
-
|
| 94 |
|
| 95 |
# Show confidence score in smaller text
|
| 96 |
-
|
| 97 |
|
| 98 |
elif not api_key and uploaded_file is not None:
|
| 99 |
-
|
| 100 |
|
| 101 |
# Add footer with instructions
|
| 102 |
-
|
| 103 |
-
|
| 104 |
---
|
| 105 |
### How to use:
|
| 106 |
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import base64
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
| 6 |
|
| 7 |
+
gr.set_page_config(page_title="AI Image Detector", page_icon="🔍")
|
| 8 |
|
| 9 |
+
gr.title("AI Image Detector")
|
| 10 |
+
gr.write("Upload an image to check if it's AI-generated")
|
| 11 |
|
| 12 |
|
| 13 |
api_key = "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"
|
| 14 |
+
gr.session_state.api_key = api_key
|
| 15 |
|
| 16 |
def process_image(image_bytes, api_key):
|
| 17 |
header_auth = f"Bearer {api_key}"
|
|
|
|
| 44 |
'status': first_result.get('status', 'UNKNOWN')
|
| 45 |
}
|
| 46 |
|
| 47 |
+
gr.error("Unexpected response format from API")
|
| 48 |
return None
|
| 49 |
|
| 50 |
except requests.exceptions.RequestException as e:
|
| 51 |
+
gr.error(f"Error processing image: {str(e)}")
|
| 52 |
return None
|
| 53 |
|
| 54 |
# File uploader
|
| 55 |
+
uploaded_file = gr.file_uploader("Choose an image...", type=['png', 'jpg', 'jpeg'])
|
| 56 |
|
| 57 |
if uploaded_file is not None and api_key:
|
| 58 |
# Display the uploaded image
|
| 59 |
image = Image.open(uploaded_file)
|
| 60 |
+
gr.image(image, caption="Uploaded Image", use_container_width=True)
|
| 61 |
|
| 62 |
# Convert image to bytes
|
| 63 |
img_byte_arr = io.BytesIO()
|
|
|
|
| 65 |
img_byte_arr = img_byte_arr.getvalue()
|
| 66 |
|
| 67 |
# Process the image
|
| 68 |
+
with gr.spinner("Analyzing image..."):
|
| 69 |
result = process_image(img_byte_arr, api_key)
|
| 70 |
|
| 71 |
if result and result['status'] == 'SUCCESS':
|
| 72 |
confidence = result['confidence']
|
| 73 |
sources = result['sources']
|
| 74 |
|
| 75 |
+
gr.write("---")
|
| 76 |
+
gr.write("### Result")
|
| 77 |
|
| 78 |
# Determine if image is AI-generated (using 50% threshold)
|
| 79 |
is_ai_generated = "Yes" if confidence >= 0.5 else "No"
|
| 80 |
|
| 81 |
# Display result with appropriate styling
|
| 82 |
if is_ai_generated == "Yes":
|
| 83 |
+
gr.error(f"Is this image AI-generated? **{is_ai_generated}**")
|
| 84 |
|
| 85 |
# Show top 3 possible sources if AI-generated
|
| 86 |
if sources:
|
| 87 |
+
gr.write("Top possible AI models used:")
|
| 88 |
sorted_sources = sorted(sources.items(), key=lambda x: x[1], reverse=True)[:3]
|
| 89 |
for source, prob in sorted_sources:
|
| 90 |
if prob > 0.01: # Only show sources with >1% probability
|
| 91 |
+
gr.write(f"- {source}: {prob:.1%}")
|
| 92 |
else:
|
| 93 |
+
gr.success(f"Is this image AI-generated? **{is_ai_generated}**")
|
| 94 |
|
| 95 |
# Show confidence score in smaller text
|
| 96 |
+
gr.caption(f"Confidence score: {confidence:.2%}")
|
| 97 |
|
| 98 |
elif not api_key and uploaded_file is not None:
|
| 99 |
+
gr.warning("Please enter your NVIDIA API key first")
|
| 100 |
|
| 101 |
# Add footer with instructions
|
| 102 |
+
gr.markdown("---")
|
| 103 |
+
gr.markdown("""
|
| 104 |
---
|
| 105 |
### How to use:
|
| 106 |
|