not-lain commited on
Commit
767912f
·
2 Parent(s): 3aa0053 7b04047

Merge branch 'main' of https://huggingface.co/spaces/not-lain/gpu-utils

Browse files
Files changed (2) hide show
  1. README.md +2 -2
  2. app.py +17 -10
README.md CHANGED
@@ -4,9 +4,9 @@ emoji: 🏃
4
  colorFrom: red
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 5.8.0
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
4
  colorFrom: red
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 5.14.0
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -20,6 +20,12 @@ def float32_high_matmul_precision():
20
  finally:
21
  torch.set_float32_matmul_precision("highest")
22
 
 
 
 
 
 
 
23
 
24
  pipe = FluxFillPipeline.from_pretrained(
25
  "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
@@ -135,15 +141,16 @@ def rmbg(image=None, url=None):
135
 
136
  def mask_generation(image=None, d=None):
137
  d = eval(d) # convert this to dictionary
138
- predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
139
- predictor.set_image(image)
140
- input_point = np.array(d["input_points"])
141
- input_label = np.array(d["input_labels"])
142
- masks, scores, logits = predictor.predict(
143
- point_coords=input_point,
144
- point_labels=input_label,
145
- multimask_output=True,
146
- )
 
147
  sorted_ind = np.argsort(scores)[::-1]
148
  masks = masks[sorted_ind]
149
  scores = scores[sorted_ind]
@@ -165,7 +172,7 @@ def erase(image=None, mask=None):
165
  return simple_lama(image, mask)
166
 
167
 
168
- @spaces.GPU
169
  def main(*args):
170
  api_num = args[0]
171
  args = args[1:]
 
20
  finally:
21
  torch.set_float32_matmul_precision("highest")
22
 
23
+ # use bfloat16 for the entire notebook
24
+ torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
25
+ # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
26
+ if torch.cuda.get_device_properties(0).major >= 8:
27
+ torch.backends.cuda.matmul.allow_tf32 = True
28
+ torch.backends.cudnn.allow_tf32 = True
29
 
30
  pipe = FluxFillPipeline.from_pretrained(
31
  "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
 
141
 
142
  def mask_generation(image=None, d=None):
143
  d = eval(d) # convert this to dictionary
144
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
145
+ predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
146
+ predictor.set_image(image)
147
+ input_point = np.array(d["input_points"])
148
+ input_label = np.array(d["input_labels"])
149
+ masks, scores, logits = predictor.predict(
150
+ point_coords=input_point,
151
+ point_labels=input_label,
152
+ multimask_output=True,
153
+ )
154
  sorted_ind = np.argsort(scores)[::-1]
155
  masks = masks[sorted_ind]
156
  scores = scores[sorted_ind]
 
172
  return simple_lama(image, mask)
173
 
174
 
175
+ @spaces.GPU(duration=120)
176
  def main(*args):
177
  api_num = args[0]
178
  args = args[1:]