introduce context manager
Browse files
app.py
CHANGED
|
@@ -9,12 +9,35 @@ from PIL import Image, ImageOps
|
|
| 9 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 10 |
import numpy as np
|
| 11 |
from simple_lama_inpainting import SimpleLama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
pipe = FluxFillPipeline.from_pretrained(
|
| 15 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
| 16 |
).to("cuda")
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def prepare_image_and_mask(
|
| 20 |
image,
|
|
@@ -98,27 +121,15 @@ def rmbg(image=None, url=None):
|
|
| 98 |
image = url
|
| 99 |
image = load_img(image).convert("RGB")
|
| 100 |
image_size = image.size
|
| 101 |
-
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 102 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 103 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 104 |
-
)
|
| 105 |
-
birefnet.to("cuda")
|
| 106 |
-
transform_image = transforms.Compose(
|
| 107 |
-
[
|
| 108 |
-
transforms.Resize((1024, 1024)),
|
| 109 |
-
transforms.ToTensor(),
|
| 110 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 111 |
-
]
|
| 112 |
-
)
|
| 113 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
| 117 |
pred = preds[0].squeeze()
|
| 118 |
pred_pil = transforms.ToPILImage()(pred)
|
| 119 |
mask = pred_pil.resize(image_size)
|
| 120 |
image.putalpha(mask)
|
| 121 |
-
torch.set_float32_matmul_precision(["high", "highest"][1])
|
| 122 |
return image
|
| 123 |
|
| 124 |
|
|
|
|
| 9 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 10 |
import numpy as np
|
| 11 |
from simple_lama_inpainting import SimpleLama
|
| 12 |
+
from contextlib import contextmanager
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@contextmanager
|
| 16 |
+
def float32_high_matmul_precision():
|
| 17 |
+
torch.set_float32_matmul_precision("high")
|
| 18 |
+
try:
|
| 19 |
+
yield
|
| 20 |
+
finally:
|
| 21 |
+
torch.set_float32_matmul_precision("highest")
|
| 22 |
|
| 23 |
|
| 24 |
pipe = FluxFillPipeline.from_pretrained(
|
| 25 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
| 26 |
).to("cuda")
|
| 27 |
|
| 28 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 29 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 30 |
+
)
|
| 31 |
+
birefnet.to("cuda")
|
| 32 |
+
|
| 33 |
+
transform_image = transforms.Compose(
|
| 34 |
+
[
|
| 35 |
+
transforms.Resize((1024, 1024)),
|
| 36 |
+
transforms.ToTensor(),
|
| 37 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 38 |
+
]
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
|
| 42 |
def prepare_image_and_mask(
|
| 43 |
image,
|
|
|
|
| 121 |
image = url
|
| 122 |
image = load_img(image).convert("RGB")
|
| 123 |
image_size = image.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
| 125 |
+
with float32_high_matmul_precision():
|
| 126 |
+
# Prediction
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 129 |
pred = preds[0].squeeze()
|
| 130 |
pred_pil = transforms.ToPILImage()(pred)
|
| 131 |
mask = pred_pil.resize(image_size)
|
| 132 |
image.putalpha(mask)
|
|
|
|
| 133 |
return image
|
| 134 |
|
| 135 |
|