introduce context manager
Browse files
app.py
CHANGED
@@ -9,12 +9,35 @@ from PIL import Image, ImageOps
|
|
9 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
10 |
import numpy as np
|
11 |
from simple_lama_inpainting import SimpleLama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
pipe = FluxFillPipeline.from_pretrained(
|
15 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
16 |
).to("cuda")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def prepare_image_and_mask(
|
20 |
image,
|
@@ -98,27 +121,15 @@ def rmbg(image=None, url=None):
|
|
98 |
image = url
|
99 |
image = load_img(image).convert("RGB")
|
100 |
image_size = image.size
|
101 |
-
torch.set_float32_matmul_precision(["high", "highest"][0])
|
102 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
103 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
104 |
-
)
|
105 |
-
birefnet.to("cuda")
|
106 |
-
transform_image = transforms.Compose(
|
107 |
-
[
|
108 |
-
transforms.Resize((1024, 1024)),
|
109 |
-
transforms.ToTensor(),
|
110 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
111 |
-
]
|
112 |
-
)
|
113 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
pred = preds[0].squeeze()
|
118 |
pred_pil = transforms.ToPILImage()(pred)
|
119 |
mask = pred_pil.resize(image_size)
|
120 |
image.putalpha(mask)
|
121 |
-
torch.set_float32_matmul_precision(["high", "highest"][1])
|
122 |
return image
|
123 |
|
124 |
|
|
|
9 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
10 |
import numpy as np
|
11 |
from simple_lama_inpainting import SimpleLama
|
12 |
+
from contextlib import contextmanager
|
13 |
+
|
14 |
+
|
15 |
+
@contextmanager
|
16 |
+
def float32_high_matmul_precision():
|
17 |
+
torch.set_float32_matmul_precision("high")
|
18 |
+
try:
|
19 |
+
yield
|
20 |
+
finally:
|
21 |
+
torch.set_float32_matmul_precision("highest")
|
22 |
|
23 |
|
24 |
pipe = FluxFillPipeline.from_pretrained(
|
25 |
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
26 |
).to("cuda")
|
27 |
|
28 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
29 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
30 |
+
)
|
31 |
+
birefnet.to("cuda")
|
32 |
+
|
33 |
+
transform_image = transforms.Compose(
|
34 |
+
[
|
35 |
+
transforms.Resize((1024, 1024)),
|
36 |
+
transforms.ToTensor(),
|
37 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
38 |
+
]
|
39 |
+
)
|
40 |
+
|
41 |
|
42 |
def prepare_image_and_mask(
|
43 |
image,
|
|
|
121 |
image = url
|
122 |
image = load_img(image).convert("RGB")
|
123 |
image_size = image.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
125 |
+
with float32_high_matmul_precision():
|
126 |
+
# Prediction
|
127 |
+
with torch.no_grad():
|
128 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
129 |
pred = preds[0].squeeze()
|
130 |
pred_pil = transforms.ToPILImage()(pred)
|
131 |
mask = pred_pil.resize(image_size)
|
132 |
image.putalpha(mask)
|
|
|
133 |
return image
|
134 |
|
135 |
|