File size: 16,490 Bytes
003d203 dc95e97 0e6c023 5919468 aa16383 dcfda89 3c62285 9c7d015 3aa0053 ad44b76 3aa0053 dc95e97 3aa0053 0e6c023 003d203 dc95e97 aa16383 dc95e97 3aa0053 aa16383 dcfda89 aa16383 dcfda89 aa16383 dcfda89 5fb3d3c aa16383 ba5420f aa16383 dcfda89 30b17a2 aa16383 dcfda89 aa16383 dc95e97 aa16383 9a3b780 aa16383 ba5420f dc95e97 ba5420f ccd0549 dc95e97 3aa0053 0e6c023 dc95e97 53ac342 2621247 dc95e97 a181ad3 2ca2e3d dc95e97 aa16383 dc95e97 aa16383 dc95e97 aa16383 2ca2e3d c74d7e5 dc95e97 c74d7e5 dc95e97 2ca2e3d dc95e97 9702cba aa16383 dcfda89 dc95e97 dcfda89 dc95e97 dcfda89 dc95e97 6039455 aa16383 0e6c023 ba5420f dc95e97 ba5420f dc95e97 ba5420f dc95e97 6039455 ba5420f 9c7d015 dc95e97 9c7d015 dc95e97 9c7d015 dc95e97 9c7d015 dc95e97 9c7d015 5919468 dc95e97 0e6c023 5919468 dc95e97 5919468 dc95e97 5919468 dc95e97 0e6c023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import gradio as gr
import spaces
import torch
from loadimg import load_img # Assuming loadimg.py exists with load_img function
from torchvision import transforms
from transformers import AutoModelForImageSegmentation, pipeline
from diffusers import FluxFillPipeline
from PIL import Image, ImageOps
import numpy as np
from simple_lama_inpainting import SimpleLama
from contextlib import contextmanager
import gc
# --- Add Translation Imports ---
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
# --- Utility Functions ---
@contextmanager
def float32_high_matmul_precision():
torch.set_float32_matmul_precision("high")
try:
yield
finally:
torch.set_float32_matmul_precision("highest")
# --- Model Loading ---
# Use context manager for precision during model loading if needed
with float32_high_matmul_precision():
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
).to("cuda")
simple_lama = SimpleLama() # Initialize Lama globally if used often
# --- Translation Model and Tokenizer Loading ---
translation_model_name = "facebook/mbart-large-50-many-to-many-mmt"
try:
translation_model = MBartForConditionalGeneration.from_pretrained(
translation_model_name
).to("cuda") # Move to GPU
translation_tokenizer = MBart50TokenizerFast.from_pretrained(translation_model_name)
except Exception as e:
print(f"Error loading translation model/tokenizer: {e}")
# Consider exiting or disabling the translation tab if loading fails
translation_model = None
translation_tokenizer = None
# --- Image Processing Functions ---
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def prepare_image_and_mask(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
):
image = load_img(image).convert("RGB")
background = ImageOps.expand(
image,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
mask = Image.new("RGB", image.size, "black")
mask = ImageOps.expand(
mask,
border=(padding_left, padding_top, padding_right, padding_bottom),
fill="white",
)
return background, mask
def outpaint(
image,
padding_top=0,
padding_bottom=0,
padding_left=0,
padding_right=0,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background, mask = prepare_image_and_mask(
image, padding_top, padding_bottom, padding_left, padding_right
)
with (
float32_high_matmul_precision()
): # Apply precision context if needed for inference
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def inpaint(
image,
mask,
prompt="",
num_inference_steps=28,
guidance_scale=50,
):
background = image.convert("RGB")
mask = mask.convert("L")
with (
float32_high_matmul_precision()
): # Apply precision context if needed for inference
result = pipe(
prompt=prompt,
height=background.height,
width=background.width,
image=background,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
result = result.convert("RGBA")
return result
def rmbg(image=None, url=None):
if image is None and url:
# Basic check for URL format, improve as needed
if not url.startswith(("http://", "https://")):
return "Invalid URL provided."
image = url # load_img should handle URLs if configured correctly
elif image is None:
return "Please provide an image or a URL."
try:
image_pil = load_img(image).convert("RGB")
except Exception as e:
return f"Error loading image: {e}"
image_size = image_pil.size
input_images = transform_image(image_pil).unsqueeze(0).to("cuda")
with float32_high_matmul_precision():
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image_pil.putalpha(mask)
# Clean up GPU memory if needed
del input_images, preds, pred
torch.cuda.empty_cache()
gc.collect()
return image_pil
def erase(image=None, mask=None):
if image is None or mask is None:
return "Please provide both an image and a mask."
try:
image_pil = load_img(image)
mask_pil = load_img(mask).convert("L")
result = simple_lama(image_pil, mask_pil)
# Clean up
gc.collect()
return result
except Exception as e:
return f"Error during erase operation: {e}"
# --- Translation Functionality ---
# Language Mapping
lang_data = {
"Arabic": "ar_AR",
"Czech": "cs_CZ",
"German": "de_DE",
"English": "en_XX",
"Spanish": "es_XX",
"Estonian": "et_EE",
"Finnish": "fi_FI",
"French": "fr_XX",
"Gujarati": "gu_IN",
"Hindi": "hi_IN",
"Italian": "it_IT",
"Japanese": "ja_XX",
"Kazakh": "kk_KZ",
"Korean": "ko_KR",
"Lithuanian": "lt_LT",
"Latvian": "lv_LV",
"Burmese": "my_MM",
"Nepali": "ne_NP",
"Dutch": "nl_XX",
"Romanian": "ro_RO",
"Russian": "ru_RU",
"Sinhala": "si_LK",
"Turkish": "tr_TR",
"Vietnamese": "vi_VN",
"Chinese": "zh_CN",
"Afrikaans": "af_ZA",
"Azerbaijani": "az_AZ",
"Bengali": "bn_IN",
"Persian": "fa_IR",
"Hebrew": "he_IL",
"Croatian": "hr_HR",
"Indonesian": "id_ID",
"Georgian": "ka_GE",
"Khmer": "km_KH",
"Macedonian": "mk_MK",
"Malayalam": "ml_IN",
"Mongolian": "mn_MN",
"Marathi": "mr_IN",
"Polish": "pl_PL",
"Pashto": "ps_AF",
"Portuguese": "pt_XX",
"Swedish": "sv_SE",
"Swahili": "sw_KE",
"Tamil": "ta_IN",
"Telugu": "te_IN",
"Thai": "th_TH",
"Tagalog": "tl_XX",
"Ukrainian": "uk_UA",
"Urdu": "ur_PK",
"Xhosa": "xh_ZA",
"Galician": "gl_ES",
"Slovene": "sl_SI",
}
language_names = sorted(list(lang_data.keys()))
def translate_text(text_to_translate, source_language_name, target_language_name):
"""
Translates text using the loaded mBART model.
"""
if translation_model is None or translation_tokenizer is None:
return "Translation model not loaded. Cannot perform translation."
if not text_to_translate:
return "Please enter text to translate."
if not source_language_name:
return "Please select a source language."
if not target_language_name:
return "Please select a target language."
try:
source_lang_code = lang_data[source_language_name]
target_lang_code = lang_data[target_language_name]
translation_tokenizer.src_lang = source_lang_code
encoded_text = translation_tokenizer(text_to_translate, return_tensors="pt").to(
"cuda"
) # Move input to GPU
target_lang_id = translation_tokenizer.lang_code_to_id[target_lang_code]
# Generate translation on GPU
with torch.no_grad(): # Use no_grad for inference
generated_tokens = translation_model.generate(
**encoded_text, forced_bos_token_id=target_lang_id, max_length=200
)
translated_text = translation_tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
# Clean up GPU memory
del encoded_text, generated_tokens
torch.cuda.empty_cache()
gc.collect()
return translated_text[0]
except KeyError as e:
return f"Error: Language code not found for {e}. Check language mappings."
except Exception as e:
print(f"Translation error: {e}")
# Clean up GPU memory on error too
torch.cuda.empty_cache()
gc.collect()
return f"An error occurred during translation: {e}"
# --- Main Function Router (for image tasks) ---
# Note: Translation uses its own function directly
@spaces.GPU(duration=120) # Keep GPU decorator if needed for image tasks
def main(*args):
api_num = args[0]
args = args[1:]
gc.collect() # Try to collect garbage before starting task
torch.cuda.empty_cache() # Clear cache before starting task
result = None
try:
if api_num == 1:
result = rmbg(*args)
elif api_num == 2:
result = outpaint(*args)
elif api_num == 3:
result = inpaint(*args)
# elif api_num == 4: # Keep commented out as in original
# return mask_generation(*args)
elif api_num == 5:
result = erase(*args)
else:
result = "Invalid API number."
except Exception as e:
print(f"Error in main task routing (api_num={api_num}): {e}")
result = f"An error occurred: {e}"
finally:
# Ensure memory cleanup happens even if there's an error
gc.collect()
torch.cuda.empty_cache()
return result
# --- Define Gradio Interfaces for Each Tab ---
# Image Task Tabs
rmbg_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(1, interactive=False, visible=False), # Hide API number
gr.Image(label="Input Image", type="pil", sources=["upload", "clipboard"]),
gr.Text(label="Or Image URL (optional)"),
],
outputs=gr.Image(label="Output Image", type="pil"),
title="Remove Background",
description="Upload an image or provide a URL to remove its background.",
api_name="rmbg",
# examples=[[1, "./assets/sample_rmbg.png", ""]], # Update example path if needed
cache_examples=False,
)
outpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(2, interactive=False, visible=False),
gr.Image(label="Input Image", type="pil", sources=["upload", "clipboard"]),
gr.Number(value=0, label="Padding Top (pixels)"),
gr.Number(value=0, label="Padding Bottom (pixels)"),
gr.Number(value=0, label="Padding Left (pixels)"),
gr.Number(value=0, label="Padding Right (pixels)"),
gr.Text(
label="Prompt (optional)",
info="Describe what to fill the extended area with",
),
gr.Slider(
minimum=10, maximum=100, step=1, value=28, label="Inference Steps"
), # Use slider for steps
gr.Slider(
minimum=1, maximum=100, step=1, value=50, label="Guidance Scale"
), # Use slider for guidance
],
outputs=gr.Image(label="Outpainted Image", type="pil"),
title="Outpainting",
description="Extend an image by adding padding and filling the new area using a diffusion model.",
api_name="outpainting",
# examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 28, 50]], # Update example path
cache_examples=False,
)
inpaint_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(3, interactive=False, visible=False),
gr.Image(label="Input Image", type="pil", sources=["upload", "clipboard"]),
gr.Image(
label="Mask Image (White=Inpaint Area)",
type="pil",
sources=["upload", "clipboard"],
),
gr.Text(
label="Prompt (optional)", info="Describe what to fill the masked area with"
),
gr.Slider(minimum=10, maximum=100, step=1, value=28, label="Inference Steps"),
gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Guidance Scale"),
],
outputs=gr.Image(label="Inpainted Image", type="pil"),
title="Inpainting",
description="Fill in the white areas of a mask applied to an image using a diffusion model.",
api_name="inpaint",
# examples=[[3, "./assets/rocket.png", "./assets/Inpainting_mask.png", "", 28, 50]], # Update example paths
cache_examples=False,
)
erase_tab = gr.Interface(
fn=main,
inputs=[
gr.Number(5, interactive=False, visible=False),
gr.Image(label="Input Image", type="pil", sources=["upload", "clipboard"]),
gr.Image(
label="Mask Image (White=Erase Area)",
type="pil",
sources=["upload", "clipboard"],
),
],
outputs=gr.Image(label="Result Image", type="pil"),
title="Erase Object (LAMA)",
description="Erase objects from an image based on a mask using the LaMa inpainting model.",
api_name="erase",
# examples=[[5, "./assets/rocket.png", "./assets/Inpainting_mask.png"]], # Update example paths
cache_examples=False,
)
# --- Define Translation Tab using gr.Blocks ---
with gr.Blocks() as translation_tab:
gr.Markdown(
"""
## Multilingual Translation (mBART-50)
Translate text between 50 different languages.
Select the source and target languages, enter your text, and click Translate.
"""
)
with gr.Row():
with gr.Column(scale=1):
source_lang_dropdown = gr.Dropdown(
label="Source Language",
choices=language_names,
info="Select the language of your input text.",
)
target_lang_dropdown = gr.Dropdown(
label="Target Language",
choices=language_names,
info="Select the language you want to translate to.",
)
with gr.Column(scale=2):
input_textbox = gr.Textbox(
label="Text to Translate",
lines=6, # Increased lines
placeholder="Enter text here...",
)
translate_button = gr.Button(
"Translate", variant="primary"
) # Added variant
output_textbox = gr.Textbox(
label="Translated Text",
lines=6, # Increased lines
interactive=False, # Make output read-only
)
# Connect Components to the translation function directly
translate_button.click(
fn=translate_text,
inputs=[input_textbox, source_lang_dropdown, target_lang_dropdown],
outputs=output_textbox,
api_name="translate", # Add API name for the translation endpoint
)
# Add Translation Examples
gr.Examples(
examples=[
[
"संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है",
"Hindi",
"French",
],
[
"الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا.",
"Arabic",
"English",
],
[
"Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie.",
"French",
"German",
],
["Hello world! How are you today?", "English", "Spanish"],
["Guten Tag!", "German", "Japanese"],
["これはテストです", "Japanese", "English"],
],
inputs=[input_textbox, source_lang_dropdown, target_lang_dropdown],
outputs=output_textbox,
fn=translate_text,
cache_examples=False,
)
# --- Combine all tabs ---
demo = gr.TabbedInterface(
[
rmbg_tab,
outpaint_tab,
inpaint_tab,
erase_tab,
translation_tab, # Add the translation tab
# sam2_tab, # Keep commented out
],
[
"Remove Background", # Tab title
"Outpainting", # Tab title
"Inpainting", # Tab title
"Erase (LAMA)", # Tab title
"Translate", # Tab title for translation
# "sam2",
],
title="Image & Text Utilities (GPU)", # Updated title
)
demo.launch()
|