|
import gradio as gr |
|
import numpy as np |
|
from time import sleep |
|
import torch |
|
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation |
|
|
|
|
|
class Count: |
|
def __init__(self): |
|
self.n = 0 |
|
|
|
def step(self): |
|
self.n += 1 |
|
|
|
|
|
weights2load = 'segformer_ep15_loss0.00.pth' |
|
id2label = {0: 'seal', 255: 'bck'} |
|
label2id = {'seal': 0, 'bck': 255} |
|
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0", |
|
num_labels=2, |
|
id2label=id2label, |
|
label2id=label2id, |
|
) |
|
image_processor = SegformerImageProcessor(reduce_labels=True) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device)) |
|
model.to(device).eval() |
|
|
|
counter = Count() |
|
|
|
def flip_periodically(im, interval_s=2): |
|
""" |
|
Flips the image periodically with the given interval. |
|
|
|
Args: |
|
im: The input image. |
|
interval_ms: The interval in milliseconds between flips. |
|
|
|
Returns: |
|
The flipped image. |
|
""" |
|
counter.step() |
|
if (counter.n % 100) == 0: |
|
pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device) |
|
outputs = model(pixel_values=pixel_values) |
|
logits = outputs.logits.cpu().detach().numpy() ** 2 |
|
counter.imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min()) |
|
return counter.imout |
|
|
|
with gr.Blocks() as demo: |
|
inp = gr.Image(sources=["webcam"], streaming=True) |
|
out = gr.Image() |
|
inp.stream(flip_periodically, inputs=inp, outputs=out) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
demo.launch() |