nivashuggingface's picture
Upload README.md with huggingface_hub
7c02998 verified
|
raw
history blame
1.79 kB
# AI Model Training Project
This project demonstrates a complete machine learning workflow from data preparation to model deployment, using the MNIST dataset with an innovative approach to digit recognition.
## Project Structure
```
.
β”œβ”€β”€ data/ # Dataset storage
β”œβ”€β”€ models/ # Saved model files
β”œβ”€β”€ src/ # Source code
β”‚ β”œβ”€β”€ data_preparation.py
β”‚ β”œβ”€β”€ model.py
β”‚ β”œβ”€β”€ training.py
β”‚ β”œβ”€β”€ evaluation.py
β”‚ └── deployment.py
β”œβ”€β”€ notebooks/ # Jupyter notebooks for exploration
β”œβ”€β”€ requirements.txt # Project dependencies
└── README.md # Project documentation
```
## Setup Instructions
1. Create a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Run the training pipeline:
```bash
python src/training.py
```
## Project Features
- Custom CNN architecture for robust digit recognition
- Data augmentation techniques
- Model evaluation and hyperparameter tuning
- Model deployment pipeline
- Performance monitoring
## Learning Concepts Covered
1. Data Preprocessing
- Data loading and cleaning
- Feature engineering
- Data augmentation
2. Model Architecture
- Custom CNN design
- Layer configuration
- Activation functions
3. Training Process
- Loss functions
- Optimizers
- Learning rate scheduling
- Early stopping
4. Evaluation
- Metrics calculation
- Cross-validation
- Model comparison
5. Deployment
- Model saving
- Inference pipeline
- Performance monitoring