|
import os
|
|
import argparse
|
|
import pandas as pd
|
|
from datasets import Dataset
|
|
from sacrebleu.metrics import BLEU, CHRF
|
|
from peft import LoraConfig, get_peft_model
|
|
from IndicTransToolkit import IndicProcessor, IndicDataCollator
|
|
|
|
from transformers import (
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoTokenizer,
|
|
EarlyStoppingCallback,
|
|
)
|
|
|
|
bleu_metric = BLEU()
|
|
chrf_metric = CHRF()
|
|
|
|
|
|
def get_arg_parse():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model",
|
|
type=str,
|
|
)
|
|
parser.add_argument(
|
|
"--src_lang_list",
|
|
type=str,
|
|
help="comma separated list of source languages",
|
|
)
|
|
parser.add_argument(
|
|
"--tgt_lang_list",
|
|
type=str,
|
|
help="comma separated list of target languages",
|
|
)
|
|
parser.add_argument("--data_dir", type=str)
|
|
parser.add_argument("--output_dir", type=str)
|
|
parser.add_argument("--save_steps", type=int, default=1000)
|
|
parser.add_argument("--eval_steps", type=int, default=1000)
|
|
parser.add_argument("--batch_size", type=int, default=32)
|
|
parser.add_argument("--num_train_epochs", type=int, default=100)
|
|
parser.add_argument("--max_steps", type=int, default=1000000)
|
|
parser.add_argument("--grad_accum_steps", type=int, default=4)
|
|
parser.add_argument("--warmup_steps", type=int, default=4000)
|
|
parser.add_argument("--warmup_ratio", type=int, default=0.0)
|
|
parser.add_argument("--max_grad_norm", type=float, default=1.0)
|
|
parser.add_argument("--learning_rate", type=float, default=5e-4)
|
|
parser.add_argument("--weight_decay", type=float, default=0.0)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9)
|
|
parser.add_argument("--adam_beta2", type=float, default=0.98)
|
|
parser.add_argument("--dropout", type=float, default=0.0)
|
|
parser.add_argument("--print_samples", action="store_true")
|
|
parser.add_argument(
|
|
"--optimizer",
|
|
type=str,
|
|
default="adamw_torch",
|
|
choices=[
|
|
"adam_hf",
|
|
"adamw_torch",
|
|
"adamw_torch_fused",
|
|
"adamw_apex_fused",
|
|
"adafactor",
|
|
],
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="inverse_sqrt",
|
|
choices=[
|
|
"inverse_sqrt",
|
|
"linear",
|
|
"polynomial",
|
|
"cosine",
|
|
"constant",
|
|
"constant_with_warmup",
|
|
],
|
|
)
|
|
parser.add_argument("--label_smoothing", type=float, default=0.0)
|
|
parser.add_argument("--num_workers", type=int, default=8)
|
|
parser.add_argument("--metric_for_best_model", type=str, default="eval_loss")
|
|
parser.add_argument("--greater_is_better", action="store_true")
|
|
parser.add_argument("--lora_target_modules", type=str, default="q_proj,k_proj")
|
|
parser.add_argument("--lora_dropout", type=float, default=0.1)
|
|
parser.add_argument("--lora_r", type=int, default=16)
|
|
parser.add_argument("--lora_alpha", type=int, default=32)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="none",
|
|
choices=["wandb", "tensorboard", "azure_ml", "none"],
|
|
)
|
|
parser.add_argument("--patience", type=int, default=5),
|
|
parser.add_argument("--threshold", type=float, default=1e-3)
|
|
return parser
|
|
|
|
|
|
def load_and_process_translation_dataset(
|
|
data_dir,
|
|
split="train",
|
|
tokenizer=None,
|
|
processor=None,
|
|
src_lang_list=None,
|
|
tgt_lang_list=None,
|
|
num_proc=8,
|
|
seed=42
|
|
):
|
|
complete_dataset = {
|
|
"sentence_SRC": [],
|
|
"sentence_TGT": [],
|
|
}
|
|
|
|
for src_lang in src_lang_list:
|
|
for tgt_lang in tgt_lang_list:
|
|
if src_lang == tgt_lang:
|
|
continue
|
|
src_path = os.path.join(
|
|
data_dir, split, f"{src_lang}-{tgt_lang}", f"{split}.{src_lang}"
|
|
)
|
|
tgt_path = os.path.join(
|
|
data_dir, split, f"{src_lang}-{tgt_lang}", f"{split}.{tgt_lang}"
|
|
)
|
|
if not os.path.exists(src_path) or not os.path.exists(tgt_path):
|
|
raise FileNotFoundError(
|
|
f"Source ({split}.{src_lang}) or Target ({split}.{tgt_lang}) file not found in {data_dir}"
|
|
)
|
|
with open(src_path, encoding="utf-8") as src_file, open(
|
|
tgt_path, encoding="utf-8"
|
|
) as tgt_file:
|
|
src_lines = src_file.readlines()
|
|
tgt_lines = tgt_file.readlines()
|
|
|
|
|
|
assert len(src_lines) == len(
|
|
tgt_lines
|
|
), f"Source and Target files have different number of lines for {split}.{src_lang} and {split}.{tgt_lang}"
|
|
|
|
complete_dataset["sentence_SRC"] += processor.preprocess_batch(
|
|
src_lines, src_lang=src_lang, tgt_lang=tgt_lang, is_target=False
|
|
)
|
|
|
|
complete_dataset["sentence_TGT"] += processor.preprocess_batch(
|
|
tgt_lines, src_lang=tgt_lang, tgt_lang=src_lang, is_target=True
|
|
)
|
|
|
|
complete_dataset = Dataset.from_dict(complete_dataset).shuffle(seed=seed)
|
|
|
|
return complete_dataset.map(
|
|
lambda example: preprocess_fn(
|
|
example,
|
|
tokenizer=tokenizer
|
|
),
|
|
batched=True,
|
|
num_proc=num_proc,
|
|
)
|
|
|
|
|
|
def compute_metrics_factory(
|
|
tokenizer, metric_dict=None, print_samples=False, n_samples=10
|
|
):
|
|
def compute_metrics(eval_preds):
|
|
preds, labels = eval_preds
|
|
|
|
labels[labels == -100] = tokenizer.pad_token_id
|
|
preds[preds == -100] = tokenizer.pad_token_id
|
|
|
|
with tokenizer.as_target_tokenizer():
|
|
preds = [
|
|
x.strip()
|
|
for x in tokenizer.batch_decode(
|
|
preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)
|
|
]
|
|
labels = [
|
|
x.strip()
|
|
for x in tokenizer.batch_decode(
|
|
labels, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)
|
|
]
|
|
|
|
assert len(preds) == len(
|
|
labels
|
|
), "Predictions and Labels have different lengths"
|
|
|
|
df = pd.DataFrame({"Predictions": preds, "References": labels}).sample(
|
|
n=n_samples
|
|
)
|
|
|
|
if print_samples:
|
|
for pred, label in zip(df["Predictions"].values, df["References"].values):
|
|
print(f" | > Prediction: {pred}")
|
|
print(f" | > Reference: {label}\n")
|
|
|
|
return {
|
|
metric_name: metric.corpus_score(preds, [labels]).score
|
|
for (metric_name, metric) in metric_dict.items()
|
|
}
|
|
|
|
return compute_metrics
|
|
|
|
|
|
def preprocess_fn(example, tokenizer, **kwargs):
|
|
model_inputs = tokenizer(
|
|
example["sentence_SRC"], truncation=True, padding=False, max_length=256
|
|
)
|
|
|
|
with tokenizer.as_target_tokenizer():
|
|
labels = tokenizer(
|
|
example["sentence_TGT"], truncation=True, padding=False, max_length=256
|
|
)
|
|
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
return model_inputs
|
|
|
|
|
|
def main(args):
|
|
print(f" | > Loading {args.model} and tokenizer ...")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
args.model,
|
|
trust_remote_code=True,
|
|
attn_implementation="eager",
|
|
dropout=args.dropout
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
|
processor = IndicProcessor(inference=False)
|
|
|
|
data_collator = IndicDataCollator(
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
padding="longest",
|
|
pad_to_multiple_of=8,
|
|
label_pad_token_id=-100
|
|
)
|
|
|
|
if args.data_dir is not None:
|
|
train_dataset = load_and_process_translation_dataset(
|
|
args.data_dir,
|
|
split="train",
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
src_lang_list=args.src_lang_list.split(","),
|
|
tgt_lang_list=args.tgt_lang_list.split(","),
|
|
)
|
|
print(f" | > Loaded train dataset from {args.data_dir}. Size: {len(train_dataset)} ...")
|
|
|
|
eval_dataset = load_and_process_translation_dataset(
|
|
args.data_dir,
|
|
split="dev",
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
src_lang_list=args.src_lang_list.split(","),
|
|
tgt_lang_list=args.tgt_lang_list.split(","),
|
|
)
|
|
print(f" | > Loaded eval dataset from {args.data_dir}. Size: {len(eval_dataset)} ...")
|
|
else:
|
|
raise ValueError(" | > Data directory not provided")
|
|
|
|
lora_config = LoraConfig(
|
|
r=args.lora_r,
|
|
bias="none",
|
|
inference_mode=False,
|
|
task_type="SEQ_2_SEQ_LM",
|
|
lora_alpha=args.lora_alpha,
|
|
lora_dropout=args.lora_dropout,
|
|
target_modules=args.lora_target_modules.split(","),
|
|
)
|
|
|
|
model.set_label_smoothing(args.label_smoothing)
|
|
|
|
model = get_peft_model(model, lora_config)
|
|
model.print_trainable_parameters()
|
|
|
|
print(f" | > Loading metrics factory with BLEU and chrF ...")
|
|
seq2seq_compute_metrics = compute_metrics_factory(
|
|
tokenizer=tokenizer,
|
|
print_samples=args.print_samples,
|
|
metric_dict={"BLEU": bleu_metric, "chrF": chrf_metric},
|
|
)
|
|
|
|
training_args = Seq2SeqTrainingArguments(
|
|
output_dir=args.output_dir,
|
|
do_train=True,
|
|
do_eval=True,
|
|
fp16=True,
|
|
logging_strategy="steps",
|
|
evaluation_strategy="steps",
|
|
save_strategy="steps",
|
|
logging_steps=100,
|
|
save_total_limit=1,
|
|
predict_with_generate=True,
|
|
load_best_model_at_end=True,
|
|
max_steps=args.max_steps,
|
|
per_device_train_batch_size=args.batch_size,
|
|
per_device_eval_batch_size=args.batch_size,
|
|
gradient_accumulation_steps=args.grad_accum_steps,
|
|
eval_accumulation_steps=args.grad_accum_steps,
|
|
weight_decay=args.weight_decay,
|
|
adam_beta1=args.adam_beta1,
|
|
adam_beta2=args.adam_beta2,
|
|
max_grad_norm=args.max_grad_norm,
|
|
optim=args.optimizer,
|
|
lr_scheduler_type=args.lr_scheduler,
|
|
warmup_ratio=args.warmup_ratio,
|
|
warmup_steps=args.warmup_steps,
|
|
learning_rate=args.learning_rate,
|
|
num_train_epochs=args.num_train_epochs,
|
|
save_steps=args.save_steps,
|
|
eval_steps=args.eval_steps,
|
|
dataloader_num_workers=args.num_workers,
|
|
metric_for_best_model=args.metric_for_best_model,
|
|
greater_is_better=args.greater_is_better,
|
|
report_to=args.report_to,
|
|
generation_max_length=256,
|
|
generation_num_beams=5,
|
|
sortish_sampler=True,
|
|
group_by_length=True,
|
|
include_tokens_per_second=True,
|
|
include_num_input_tokens_seen=True,
|
|
dataloader_prefetch_factor=2,
|
|
)
|
|
|
|
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
data_collator=data_collator,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
compute_metrics=seq2seq_compute_metrics,
|
|
callbacks=[
|
|
EarlyStoppingCallback(
|
|
early_stopping_patience=args.patience,
|
|
early_stopping_threshold=args.threshold,
|
|
)
|
|
],
|
|
)
|
|
|
|
print(f" | > Starting training ...")
|
|
|
|
try:
|
|
trainer.train()
|
|
except KeyboardInterrupt:
|
|
print(f" | > Training interrupted ...")
|
|
|
|
|
|
model.save_pretrained(args.output_dir)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = get_arg_parse()
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|
|
|