File size: 12,204 Bytes
74ee63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import argparse
import pandas as pd
from datasets import Dataset
from sacrebleu.metrics import BLEU, CHRF
from peft import LoraConfig, get_peft_model
from IndicTransToolkit import IndicProcessor, IndicDataCollator

from transformers import (
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    EarlyStoppingCallback,
)

bleu_metric = BLEU()
chrf_metric = CHRF()


def get_arg_parse():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model",
        type=str,
    )
    parser.add_argument(
        "--src_lang_list",
        type=str,
        help="comma separated list of source languages",
    )
    parser.add_argument(
        "--tgt_lang_list",
        type=str,
        help="comma separated list of target languages",
    )
    parser.add_argument("--data_dir", type=str)
    parser.add_argument("--output_dir", type=str)
    parser.add_argument("--save_steps", type=int, default=1000)
    parser.add_argument("--eval_steps", type=int, default=1000)
    parser.add_argument("--batch_size", type=int, default=32)
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument("--max_steps", type=int, default=1000000)
    parser.add_argument("--grad_accum_steps", type=int, default=4)
    parser.add_argument("--warmup_steps", type=int, default=4000)
    parser.add_argument("--warmup_ratio", type=int, default=0.0)
    parser.add_argument("--max_grad_norm", type=float, default=1.0)
    parser.add_argument("--learning_rate", type=float, default=5e-4)
    parser.add_argument("--weight_decay", type=float, default=0.0)
    parser.add_argument("--adam_beta1", type=float, default=0.9)
    parser.add_argument("--adam_beta2", type=float, default=0.98)
    parser.add_argument("--dropout", type=float, default=0.0)
    parser.add_argument("--print_samples", action="store_true")
    parser.add_argument(
        "--optimizer",
        type=str,
        default="adamw_torch",
        choices=[
            "adam_hf",
            "adamw_torch",
            "adamw_torch_fused",
            "adamw_apex_fused",
            "adafactor",
        ],
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="inverse_sqrt",
        choices=[
            "inverse_sqrt",
            "linear",
            "polynomial",
            "cosine",
            "constant",
            "constant_with_warmup",
        ],
    )
    parser.add_argument("--label_smoothing", type=float, default=0.0)
    parser.add_argument("--num_workers", type=int, default=8)
    parser.add_argument("--metric_for_best_model", type=str, default="eval_loss")
    parser.add_argument("--greater_is_better", action="store_true")
    parser.add_argument("--lora_target_modules", type=str, default="q_proj,k_proj")
    parser.add_argument("--lora_dropout", type=float, default=0.1)
    parser.add_argument("--lora_r", type=int, default=16)
    parser.add_argument("--lora_alpha", type=int, default=32)
    parser.add_argument(
        "--report_to",
        type=str,
        default="none",
        choices=["wandb", "tensorboard", "azure_ml", "none"],
    )
    parser.add_argument("--patience", type=int, default=5),
    parser.add_argument("--threshold", type=float, default=1e-3)
    return parser


def load_and_process_translation_dataset(

    data_dir,

    split="train",

    tokenizer=None,

    processor=None,

    src_lang_list=None,

    tgt_lang_list=None,

    num_proc=8,

    seed=42

):
    complete_dataset = {
        "sentence_SRC": [],
        "sentence_TGT": [],
    }

    for src_lang in src_lang_list:
        for tgt_lang in tgt_lang_list:
            if src_lang == tgt_lang:
                continue
            src_path = os.path.join(
                data_dir, split, f"{src_lang}-{tgt_lang}", f"{split}.{src_lang}"
            )
            tgt_path = os.path.join(
                data_dir, split, f"{src_lang}-{tgt_lang}", f"{split}.{tgt_lang}"
            )
            if not os.path.exists(src_path) or not os.path.exists(tgt_path):
                raise FileNotFoundError(
                    f"Source ({split}.{src_lang}) or Target ({split}.{tgt_lang}) file not found in {data_dir}"
                )
            with open(src_path, encoding="utf-8") as src_file, open(
                tgt_path, encoding="utf-8"
            ) as tgt_file:
                src_lines = src_file.readlines()
                tgt_lines = tgt_file.readlines()

            # Ensure both files have the same number of lines
            assert len(src_lines) == len(
                tgt_lines
            ), f"Source and Target files have different number of lines for {split}.{src_lang} and {split}.{tgt_lang}"

            complete_dataset["sentence_SRC"] += processor.preprocess_batch(
                src_lines, src_lang=src_lang, tgt_lang=tgt_lang, is_target=False
            )

            complete_dataset["sentence_TGT"] += processor.preprocess_batch(
                tgt_lines, src_lang=tgt_lang, tgt_lang=src_lang, is_target=True
            )

    complete_dataset = Dataset.from_dict(complete_dataset).shuffle(seed=seed)

    return complete_dataset.map(
        lambda example: preprocess_fn(
            example,
            tokenizer=tokenizer
        ),
        batched=True,
        num_proc=num_proc,
    )


def compute_metrics_factory(

    tokenizer, metric_dict=None, print_samples=False, n_samples=10

):
    def compute_metrics(eval_preds):
        preds, labels = eval_preds

        labels[labels == -100] = tokenizer.pad_token_id
        preds[preds == -100] = tokenizer.pad_token_id

        with tokenizer.as_target_tokenizer():
            preds = [
                x.strip()
                for x in tokenizer.batch_decode(
                    preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
            ]
            labels = [
                x.strip()
                for x in tokenizer.batch_decode(
                    labels, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
            ]

        assert len(preds) == len(
            labels
        ), "Predictions and Labels have different lengths"

        df = pd.DataFrame({"Predictions": preds, "References": labels}).sample(
            n=n_samples
        )

        if print_samples:
            for pred, label in zip(df["Predictions"].values, df["References"].values):
                print(f" | > Prediction: {pred}")
                print(f" | > Reference: {label}\n")

        return {
            metric_name: metric.corpus_score(preds, [labels]).score
            for (metric_name, metric) in metric_dict.items()
        }

    return compute_metrics


def preprocess_fn(example, tokenizer, **kwargs):
    model_inputs = tokenizer(
        example["sentence_SRC"], truncation=True, padding=False, max_length=256
    )

    with tokenizer.as_target_tokenizer():
        labels = tokenizer(
            example["sentence_TGT"], truncation=True, padding=False, max_length=256
        )

    model_inputs["labels"] = labels["input_ids"]
    return model_inputs


def main(args):
    print(f" | > Loading {args.model} and tokenizer ...")
    model = AutoModelForSeq2SeqLM.from_pretrained(
        args.model,
        trust_remote_code=True,
        attn_implementation="eager",
        dropout=args.dropout
    )

    tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
    processor = IndicProcessor(inference=False) # pre-process before tokenization
    
    data_collator = IndicDataCollator(
        tokenizer=tokenizer,
        model=model,
        padding="longest", # saves padding tokens
        pad_to_multiple_of=8, # better to have it as 8 when using fp16
        label_pad_token_id=-100
    )

    if args.data_dir is not None:
        train_dataset = load_and_process_translation_dataset(
            args.data_dir,
            split="train",
            tokenizer=tokenizer,
            processor=processor,
            src_lang_list=args.src_lang_list.split(","),
            tgt_lang_list=args.tgt_lang_list.split(","),
        )
        print(f" | > Loaded train dataset from {args.data_dir}. Size: {len(train_dataset)} ...")

        eval_dataset = load_and_process_translation_dataset(
            args.data_dir,
            split="dev",
            tokenizer=tokenizer,
            processor=processor,
            src_lang_list=args.src_lang_list.split(","),
            tgt_lang_list=args.tgt_lang_list.split(","),
        )
        print(f" | > Loaded eval dataset from {args.data_dir}. Size: {len(eval_dataset)} ...")
    else:
        raise ValueError(" | > Data directory not provided")

    lora_config = LoraConfig(
        r=args.lora_r,
        bias="none",
        inference_mode=False,
        task_type="SEQ_2_SEQ_LM",
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
        target_modules=args.lora_target_modules.split(","),
    )

    model.set_label_smoothing(args.label_smoothing)

    model = get_peft_model(model, lora_config)
    model.print_trainable_parameters()

    print(f" | > Loading metrics factory with BLEU and chrF ...")
    seq2seq_compute_metrics = compute_metrics_factory(
        tokenizer=tokenizer,
        print_samples=args.print_samples,
        metric_dict={"BLEU": bleu_metric, "chrF": chrf_metric},
    )

    training_args = Seq2SeqTrainingArguments(
        output_dir=args.output_dir,
        do_train=True,
        do_eval=True,
        fp16=True, # use fp16 for faster training
        logging_strategy="steps",
        evaluation_strategy="steps",
        save_strategy="steps",
        logging_steps=100,
        save_total_limit=1,
        predict_with_generate=True,
        load_best_model_at_end=True,
        max_steps=args.max_steps, # max_steps overrides num_train_epochs
        per_device_train_batch_size=args.batch_size,
        per_device_eval_batch_size=args.batch_size,
        gradient_accumulation_steps=args.grad_accum_steps,
        eval_accumulation_steps=args.grad_accum_steps,
        weight_decay=args.weight_decay,
        adam_beta1=args.adam_beta1,
        adam_beta2=args.adam_beta2,
        max_grad_norm=args.max_grad_norm,
        optim=args.optimizer,
        lr_scheduler_type=args.lr_scheduler,
        warmup_ratio=args.warmup_ratio,
        warmup_steps=args.warmup_steps,
        learning_rate=args.learning_rate,
        num_train_epochs=args.num_train_epochs,
        save_steps=args.save_steps,
        eval_steps=args.eval_steps,
        dataloader_num_workers=args.num_workers,
        metric_for_best_model=args.metric_for_best_model,
        greater_is_better=args.greater_is_better,
        report_to=args.report_to,
        generation_max_length=256,
        generation_num_beams=5,
        sortish_sampler=True,
        group_by_length=True,
        include_tokens_per_second=True,
        include_num_input_tokens_seen=True,
        dataloader_prefetch_factor=2,
    )

    # Create Trainer instance
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=seq2seq_compute_metrics,
        callbacks=[
            EarlyStoppingCallback(
                early_stopping_patience=args.patience,
                early_stopping_threshold=args.threshold,
            )
        ],
    )

    print(f" | > Starting training ...")

    try:
        trainer.train()
    except KeyboardInterrupt:
        print(f" | > Training interrupted ...")

    # this will only save the LoRA adapter weights
    model.save_pretrained(args.output_dir)



if __name__ == "__main__":
    parser = get_arg_parse()
    args = parser.parse_args()

    main(args)