stt-ml / app.py
nitikdias's picture
Create app.py
df298e7 verified
raw
history blame
3.94 kB
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig, AutoTokenizer
from IndicTransToolkit import IndicProcessor
import speech_recognition as sr
# Constants
BATCH_SIZE = 4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
quantization = None
# ---- IndicTrans2 Model Initialization ----
def initialize_model_and_tokenizer(ckpt_dir, quantization):
if quantization == "4-bit":
qconfig = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
elif quantization == "8-bit":
qconfig = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_compute_dtype=torch.bfloat16,
)
else:
qconfig = None
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(
ckpt_dir,
trust_remote_code=True,
low_cpu_mem_usage=True,
quantization_config=qconfig,
)
if qconfig is None:
model = model.to(DEVICE)
if DEVICE == "cuda":
model.half()
model.eval()
return tokenizer, model
def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip):
translations = []
for i in range(0, len(input_sentences), BATCH_SIZE):
batch = input_sentences[i : i + BATCH_SIZE]
batch = ip.preprocess_batch(batch, src_lang=src_lang, tgt_lang=tgt_lang)
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1,
)
with tokenizer.as_target_tokenizer():
generated_tokens = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
translations += ip.postprocess_batch(generated_tokens, lang=tgt_lang)
del inputs
torch.cuda.empty_cache()
return translations
# Initialize IndicTrans2
en_indic_ckpt_dir = "ai4bharat/indictrans2-indic-en-1B"
en_indic_tokenizer, en_indic_model = initialize_model_and_tokenizer(en_indic_ckpt_dir, quantization)
ip = IndicProcessor(inference=True)
# ---- Gradio Function ----
def transcribe_and_translate(audio):
recognizer = sr.Recognizer()
with sr.AudioFile(audio) as source:
audio_data = recognizer.record(source)
try:
# Malayalam transcription using Google API
malayalam_text = recognizer.recognize_google(audio_data, language="ml-IN")
except sr.UnknownValueError:
return "Could not understand audio", ""
except sr.RequestError as e:
return f"Google API Error: {e}", ""
# Translation
en_sents = [malayalam_text]
src_lang, tgt_lang = "mal_Mlym", "eng_Latn"
translations = batch_translate(en_sents, src_lang, tgt_lang, en_indic_model, en_indic_tokenizer, ip)
return malayalam_text, translations[0]
# ---- Gradio Interface ----
iface = gr.Interface(
fn=transcribe_and_translate,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
outputs=[
gr.Textbox(label="Malayalam Transcription"),
gr.Textbox(label="English Translation")
],
title="Malayalam Speech Recognition & Translation",
description="Speak in Malayalam β†’ Transcribe using Google Speech Recognition β†’ Translate to English using IndicTrans2."
)
iface.launch(debug=True)