nitikdias commited on
Commit
df298e7
·
verified ·
1 Parent(s): ca8fe41

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +118 -0
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForSeq2SeqLM, BitsAndBytesConfig, AutoTokenizer
4
+ from IndicTransToolkit import IndicProcessor
5
+ import speech_recognition as sr
6
+
7
+ # Constants
8
+ BATCH_SIZE = 4
9
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
10
+ quantization = None
11
+
12
+ # ---- IndicTrans2 Model Initialization ----
13
+ def initialize_model_and_tokenizer(ckpt_dir, quantization):
14
+ if quantization == "4-bit":
15
+ qconfig = BitsAndBytesConfig(
16
+ load_in_4bit=True,
17
+ bnb_4bit_use_double_quant=True,
18
+ bnb_4bit_compute_dtype=torch.bfloat16,
19
+ )
20
+ elif quantization == "8-bit":
21
+ qconfig = BitsAndBytesConfig(
22
+ load_in_8bit=True,
23
+ bnb_8bit_use_double_quant=True,
24
+ bnb_8bit_compute_dtype=torch.bfloat16,
25
+ )
26
+ else:
27
+ qconfig = None
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_dir, trust_remote_code=True)
30
+ model = AutoModelForSeq2SeqLM.from_pretrained(
31
+ ckpt_dir,
32
+ trust_remote_code=True,
33
+ low_cpu_mem_usage=True,
34
+ quantization_config=qconfig,
35
+ )
36
+
37
+ if qconfig is None:
38
+ model = model.to(DEVICE)
39
+ if DEVICE == "cuda":
40
+ model.half()
41
+
42
+ model.eval()
43
+ return tokenizer, model
44
+
45
+ def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip):
46
+ translations = []
47
+ for i in range(0, len(input_sentences), BATCH_SIZE):
48
+ batch = input_sentences[i : i + BATCH_SIZE]
49
+ batch = ip.preprocess_batch(batch, src_lang=src_lang, tgt_lang=tgt_lang)
50
+ inputs = tokenizer(
51
+ batch,
52
+ truncation=True,
53
+ padding="longest",
54
+ return_tensors="pt",
55
+ return_attention_mask=True,
56
+ ).to(DEVICE)
57
+
58
+ with torch.no_grad():
59
+ generated_tokens = model.generate(
60
+ **inputs,
61
+ use_cache=True,
62
+ min_length=0,
63
+ max_length=256,
64
+ num_beams=5,
65
+ num_return_sequences=1,
66
+ )
67
+
68
+ with tokenizer.as_target_tokenizer():
69
+ generated_tokens = tokenizer.batch_decode(
70
+ generated_tokens.detach().cpu().tolist(),
71
+ skip_special_tokens=True,
72
+ clean_up_tokenization_spaces=True,
73
+ )
74
+
75
+ translations += ip.postprocess_batch(generated_tokens, lang=tgt_lang)
76
+ del inputs
77
+ torch.cuda.empty_cache()
78
+
79
+ return translations
80
+
81
+ # Initialize IndicTrans2
82
+ en_indic_ckpt_dir = "ai4bharat/indictrans2-indic-en-1B"
83
+ en_indic_tokenizer, en_indic_model = initialize_model_and_tokenizer(en_indic_ckpt_dir, quantization)
84
+ ip = IndicProcessor(inference=True)
85
+
86
+ # ---- Gradio Function ----
87
+ def transcribe_and_translate(audio):
88
+ recognizer = sr.Recognizer()
89
+ with sr.AudioFile(audio) as source:
90
+ audio_data = recognizer.record(source)
91
+ try:
92
+ # Malayalam transcription using Google API
93
+ malayalam_text = recognizer.recognize_google(audio_data, language="ml-IN")
94
+ except sr.UnknownValueError:
95
+ return "Could not understand audio", ""
96
+ except sr.RequestError as e:
97
+ return f"Google API Error: {e}", ""
98
+
99
+ # Translation
100
+ en_sents = [malayalam_text]
101
+ src_lang, tgt_lang = "mal_Mlym", "eng_Latn"
102
+ translations = batch_translate(en_sents, src_lang, tgt_lang, en_indic_model, en_indic_tokenizer, ip)
103
+
104
+ return malayalam_text, translations[0]
105
+
106
+ # ---- Gradio Interface ----
107
+ iface = gr.Interface(
108
+ fn=transcribe_and_translate,
109
+ inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
110
+ outputs=[
111
+ gr.Textbox(label="Malayalam Transcription"),
112
+ gr.Textbox(label="English Translation")
113
+ ],
114
+ title="Malayalam Speech Recognition & Translation",
115
+ description="Speak in Malayalam → Transcribe using Google Speech Recognition → Translate to English using IndicTrans2."
116
+ )
117
+
118
+ iface.launch(debug=True)