Spaces:
Sleeping
Sleeping
other files
Browse files
bestmodel-epoch=46-monitor-val_acc1=63.7760009765625.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b23331d5f080e54f234d9d6c1fc93d7f19eddbc4f0633ff4e2c02638fb0d70a
|
3 |
+
size 307148520
|
imagenet_class_labels.csv
ADDED
@@ -0,0 +1,1001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Index,ID,Labels
|
2 |
+
n02119789,1,kit_fox
|
3 |
+
n02100735,2,English_setter
|
4 |
+
n02110185,3,Siberian_husky
|
5 |
+
n02096294,4,Australian_terrier
|
6 |
+
n02102040,5,English_springer
|
7 |
+
n02066245,6,grey_whale
|
8 |
+
n02509815,7,lesser_panda
|
9 |
+
n02124075,8,Egyptian_cat
|
10 |
+
n02417914,9,ibex
|
11 |
+
n02123394,10,Persian_cat
|
12 |
+
n02125311,11,cougar
|
13 |
+
n02423022,12,gazelle
|
14 |
+
n02346627,13,porcupine
|
15 |
+
n02077923,14,sea_lion
|
16 |
+
n02110063,15,malamute
|
17 |
+
n02447366,16,badger
|
18 |
+
n02109047,17,Great_Dane
|
19 |
+
n02089867,18,Walker_hound
|
20 |
+
n02102177,19,Welsh_springer_spaniel
|
21 |
+
n02091134,20,whippet
|
22 |
+
n02092002,21,Scottish_deerhound
|
23 |
+
n02071294,22,killer_whale
|
24 |
+
n02442845,23,mink
|
25 |
+
n02504458,24,African_elephant
|
26 |
+
n02092339,25,Weimaraner
|
27 |
+
n02098105,26,soft-coated_wheaten_terrier
|
28 |
+
n02096437,27,Dandie_Dinmont
|
29 |
+
n02114712,28,red_wolf
|
30 |
+
n02105641,29,Old_English_sheepdog
|
31 |
+
n02128925,30,jaguar
|
32 |
+
n02091635,31,otterhound
|
33 |
+
n02088466,32,bloodhound
|
34 |
+
n02096051,33,Airedale
|
35 |
+
n02117135,34,hyena
|
36 |
+
n02138441,35,meerkat
|
37 |
+
n02097130,36,giant_schnauzer
|
38 |
+
n02493509,37,titi
|
39 |
+
n02457408,38,three-toed_sloth
|
40 |
+
n02389026,39,sorrel
|
41 |
+
n02443484,40,black-footed_ferret
|
42 |
+
n02110341,41,dalmatian
|
43 |
+
n02089078,42,black-and-tan_coonhound
|
44 |
+
n02086910,43,papillon
|
45 |
+
n02445715,44,skunk
|
46 |
+
n02093256,45,Staffordshire_bullterrier
|
47 |
+
n02113978,46,Mexican_hairless
|
48 |
+
n02106382,47,Bouvier_des_Flandres
|
49 |
+
n02441942,48,weasel
|
50 |
+
n02113712,49,miniature_poodle
|
51 |
+
n02113186,50,Cardigan
|
52 |
+
n02105162,51,malinois
|
53 |
+
n02415577,52,bighorn
|
54 |
+
n02356798,53,fox_squirrel
|
55 |
+
n02488702,54,colobus
|
56 |
+
n02123159,55,tiger_cat
|
57 |
+
n02098413,56,Lhasa
|
58 |
+
n02422699,57,impala
|
59 |
+
n02114855,58,coyote
|
60 |
+
n02094433,59,Yorkshire_terrier
|
61 |
+
n02111277,60,Newfoundland
|
62 |
+
n02132136,61,brown_bear
|
63 |
+
n02119022,62,red_fox
|
64 |
+
n02091467,63,Norwegian_elkhound
|
65 |
+
n02106550,64,Rottweiler
|
66 |
+
n02422106,65,hartebeest
|
67 |
+
n02091831,66,Saluki
|
68 |
+
n02120505,67,grey_fox
|
69 |
+
n02104365,68,schipperke
|
70 |
+
n02086079,69,Pekinese
|
71 |
+
n02112706,70,Brabancon_griffon
|
72 |
+
n02098286,71,West_Highland_white_terrier
|
73 |
+
n02095889,72,Sealyham_terrier
|
74 |
+
n02484975,73,guenon
|
75 |
+
n02137549,74,mongoose
|
76 |
+
n02500267,75,indri
|
77 |
+
n02129604,76,tiger
|
78 |
+
n02090721,77,Irish_wolfhound
|
79 |
+
n02396427,78,wild_boar
|
80 |
+
n02108000,79,EntleBucher
|
81 |
+
n02391049,80,zebra
|
82 |
+
n02412080,81,ram
|
83 |
+
n02108915,82,French_bulldog
|
84 |
+
n02480495,83,orangutan
|
85 |
+
n02110806,84,basenji
|
86 |
+
n02128385,85,leopard
|
87 |
+
n02107683,86,Bernese_mountain_dog
|
88 |
+
n02085936,87,Maltese_dog
|
89 |
+
n02094114,88,Norfolk_terrier
|
90 |
+
n02087046,89,toy_terrier
|
91 |
+
n02100583,90,vizsla
|
92 |
+
n02096177,91,cairn
|
93 |
+
n02494079,92,squirrel_monkey
|
94 |
+
n02105056,93,groenendael
|
95 |
+
n02101556,94,clumber
|
96 |
+
n02123597,95,Siamese_cat
|
97 |
+
n02481823,96,chimpanzee
|
98 |
+
n02105505,97,komondor
|
99 |
+
n02088094,98,Afghan_hound
|
100 |
+
n02085782,99,Japanese_spaniel
|
101 |
+
n02489166,100,proboscis_monkey
|
102 |
+
n02364673,101,guinea_pig
|
103 |
+
n02114548,102,white_wolf
|
104 |
+
n02134084,103,ice_bear
|
105 |
+
n02480855,104,gorilla
|
106 |
+
n02090622,105,borzoi
|
107 |
+
n02113624,106,toy_poodle
|
108 |
+
n02093859,107,Kerry_blue_terrier
|
109 |
+
n02403003,108,ox
|
110 |
+
n02097298,109,Scotch_terrier
|
111 |
+
n02108551,110,Tibetan_mastiff
|
112 |
+
n02493793,111,spider_monkey
|
113 |
+
n02107142,112,Doberman
|
114 |
+
n02096585,113,Boston_bull
|
115 |
+
n02107574,114,Greater_Swiss_Mountain_dog
|
116 |
+
n02107908,115,Appenzeller
|
117 |
+
n02086240,116,Shih-Tzu
|
118 |
+
n02102973,117,Irish_water_spaniel
|
119 |
+
n02112018,118,Pomeranian
|
120 |
+
n02093647,119,Bedlington_terrier
|
121 |
+
n02397096,120,warthog
|
122 |
+
n02437312,121,Arabian_camel
|
123 |
+
n02483708,122,siamang
|
124 |
+
n02097047,123,miniature_schnauzer
|
125 |
+
n02106030,124,collie
|
126 |
+
n02099601,125,golden_retriever
|
127 |
+
n02093991,126,Irish_terrier
|
128 |
+
n02110627,127,affenpinscher
|
129 |
+
n02106166,128,Border_collie
|
130 |
+
n02326432,129,hare
|
131 |
+
n02108089,130,boxer
|
132 |
+
n02097658,131,silky_terrier
|
133 |
+
n02088364,132,beagle
|
134 |
+
n02111129,133,Leonberg
|
135 |
+
n02100236,134,German_short-haired_pointer
|
136 |
+
n02486261,135,patas
|
137 |
+
n02115913,136,dhole
|
138 |
+
n02486410,137,baboon
|
139 |
+
n02487347,138,macaque
|
140 |
+
n02099849,139,Chesapeake_Bay_retriever
|
141 |
+
n02108422,140,bull_mastiff
|
142 |
+
n02104029,141,kuvasz
|
143 |
+
n02492035,142,capuchin
|
144 |
+
n02110958,143,pug
|
145 |
+
n02099429,144,curly-coated_retriever
|
146 |
+
n02094258,145,Norwich_terrier
|
147 |
+
n02099267,146,flat-coated_retriever
|
148 |
+
n02395406,147,hog
|
149 |
+
n02112350,148,keeshond
|
150 |
+
n02109961,149,Eskimo_dog
|
151 |
+
n02101388,150,Brittany_spaniel
|
152 |
+
n02113799,151,standard_poodle
|
153 |
+
n02095570,152,Lakeland_terrier
|
154 |
+
n02128757,153,snow_leopard
|
155 |
+
n02101006,154,Gordon_setter
|
156 |
+
n02115641,155,dingo
|
157 |
+
n02097209,156,standard_schnauzer
|
158 |
+
n02342885,157,hamster
|
159 |
+
n02097474,158,Tibetan_terrier
|
160 |
+
n02120079,159,Arctic_fox
|
161 |
+
n02095314,160,wire-haired_fox_terrier
|
162 |
+
n02088238,161,basset
|
163 |
+
n02408429,162,water_buffalo
|
164 |
+
n02133161,163,American_black_bear
|
165 |
+
n02328150,164,Angora
|
166 |
+
n02410509,165,bison
|
167 |
+
n02492660,166,howler_monkey
|
168 |
+
n02398521,167,hippopotamus
|
169 |
+
n02112137,168,chow
|
170 |
+
n02510455,169,giant_panda
|
171 |
+
n02093428,170,American_Staffordshire_terrier
|
172 |
+
n02105855,171,Shetland_sheepdog
|
173 |
+
n02111500,172,Great_Pyrenees
|
174 |
+
n02085620,173,Chihuahua
|
175 |
+
n02123045,174,tabby
|
176 |
+
n02490219,175,marmoset
|
177 |
+
n02099712,176,Labrador_retriever
|
178 |
+
n02109525,177,Saint_Bernard
|
179 |
+
n02454379,178,armadillo
|
180 |
+
n02111889,179,Samoyed
|
181 |
+
n02088632,180,bluetick
|
182 |
+
n02090379,181,redbone
|
183 |
+
n02443114,182,polecat
|
184 |
+
n02361337,183,marmot
|
185 |
+
n02105412,184,kelpie
|
186 |
+
n02483362,185,gibbon
|
187 |
+
n02437616,186,llama
|
188 |
+
n02107312,187,miniature_pinscher
|
189 |
+
n02325366,188,wood_rabbit
|
190 |
+
n02091032,189,Italian_greyhound
|
191 |
+
n02129165,190,lion
|
192 |
+
n02102318,191,cocker_spaniel
|
193 |
+
n02100877,192,Irish_setter
|
194 |
+
n02074367,193,dugong
|
195 |
+
n02504013,194,Indian_elephant
|
196 |
+
n02363005,195,beaver
|
197 |
+
n02102480,196,Sussex_spaniel
|
198 |
+
n02113023,197,Pembroke
|
199 |
+
n02086646,198,Blenheim_spaniel
|
200 |
+
n02497673,199,Madagascar_cat
|
201 |
+
n02087394,200,Rhodesian_ridgeback
|
202 |
+
n02127052,201,lynx
|
203 |
+
n02116738,202,African_hunting_dog
|
204 |
+
n02488291,203,langur
|
205 |
+
n02091244,204,Ibizan_hound
|
206 |
+
n02114367,205,timber_wolf
|
207 |
+
n02130308,206,cheetah
|
208 |
+
n02089973,207,English_foxhound
|
209 |
+
n02105251,208,briard
|
210 |
+
n02134418,209,sloth_bear
|
211 |
+
n02093754,210,Border_terrier
|
212 |
+
n02106662,211,German_shepherd
|
213 |
+
n02444819,212,otter
|
214 |
+
n01882714,213,koala
|
215 |
+
n01871265,214,tusker
|
216 |
+
n01872401,215,echidna
|
217 |
+
n01877812,216,wallaby
|
218 |
+
n01873310,217,platypus
|
219 |
+
n01883070,218,wombat
|
220 |
+
n04086273,219,revolver
|
221 |
+
n04507155,220,umbrella
|
222 |
+
n04147183,221,schooner
|
223 |
+
n04254680,222,soccer_ball
|
224 |
+
n02672831,223,accordion
|
225 |
+
n02219486,224,ant
|
226 |
+
n02317335,225,starfish
|
227 |
+
n01968897,226,chambered_nautilus
|
228 |
+
n03452741,227,grand_piano
|
229 |
+
n03642806,228,laptop
|
230 |
+
n07745940,229,strawberry
|
231 |
+
n02690373,230,airliner
|
232 |
+
n04552348,231,warplane
|
233 |
+
n02692877,232,airship
|
234 |
+
n02782093,233,balloon
|
235 |
+
n04266014,234,space_shuttle
|
236 |
+
n03344393,235,fireboat
|
237 |
+
n03447447,236,gondola
|
238 |
+
n04273569,237,speedboat
|
239 |
+
n03662601,238,lifeboat
|
240 |
+
n02951358,239,canoe
|
241 |
+
n04612504,240,yawl
|
242 |
+
n02981792,241,catamaran
|
243 |
+
n04483307,242,trimaran
|
244 |
+
n03095699,243,container_ship
|
245 |
+
n03673027,244,liner
|
246 |
+
n03947888,245,pirate
|
247 |
+
n02687172,246,aircraft_carrier
|
248 |
+
n04347754,247,submarine
|
249 |
+
n04606251,248,wreck
|
250 |
+
n03478589,249,half_track
|
251 |
+
n04389033,250,tank
|
252 |
+
n03773504,251,missile
|
253 |
+
n02860847,252,bobsled
|
254 |
+
n03218198,253,dogsled
|
255 |
+
n02835271,254,bicycle-built-for-two
|
256 |
+
n03792782,255,mountain_bike
|
257 |
+
n03393912,256,freight_car
|
258 |
+
n03895866,257,passenger_car
|
259 |
+
n02797295,258,barrow
|
260 |
+
n04204347,259,shopping_cart
|
261 |
+
n03791053,260,motor_scooter
|
262 |
+
n03384352,261,forklift
|
263 |
+
n03272562,262,electric_locomotive
|
264 |
+
n04310018,263,steam_locomotive
|
265 |
+
n02704792,264,amphibian
|
266 |
+
n02701002,265,ambulance
|
267 |
+
n02814533,266,beach_wagon
|
268 |
+
n02930766,267,cab
|
269 |
+
n03100240,268,convertible
|
270 |
+
n03594945,269,jeep
|
271 |
+
n03670208,270,limousine
|
272 |
+
n03770679,271,minivan
|
273 |
+
n03777568,272,Model_T
|
274 |
+
n04037443,273,racer
|
275 |
+
n04285008,274,sports_car
|
276 |
+
n03444034,275,go-kart
|
277 |
+
n03445924,276,golfcart
|
278 |
+
n03785016,277,moped
|
279 |
+
n04252225,278,snowplow
|
280 |
+
n03345487,279,fire_engine
|
281 |
+
n03417042,280,garbage_truck
|
282 |
+
n03930630,281,pickup
|
283 |
+
n04461696,282,tow_truck
|
284 |
+
n04467665,283,trailer_truck
|
285 |
+
n03796401,284,moving_van
|
286 |
+
n03977966,285,police_van
|
287 |
+
n04065272,286,recreational_vehicle
|
288 |
+
n04335435,287,streetcar
|
289 |
+
n04252077,288,snowmobile
|
290 |
+
n04465501,289,tractor
|
291 |
+
n03776460,290,mobile_home
|
292 |
+
n04482393,291,tricycle
|
293 |
+
n04509417,292,unicycle
|
294 |
+
n03538406,293,horse_cart
|
295 |
+
n03599486,294,jinrikisha
|
296 |
+
n03868242,295,oxcart
|
297 |
+
n02804414,296,bassinet
|
298 |
+
n03125729,297,cradle
|
299 |
+
n03131574,298,crib
|
300 |
+
n03388549,299,four-poster
|
301 |
+
n02870880,300,bookcase
|
302 |
+
n03018349,301,china_cabinet
|
303 |
+
n03742115,302,medicine_chest
|
304 |
+
n03016953,303,chiffonier
|
305 |
+
n04380533,304,table_lamp
|
306 |
+
n03337140,305,file
|
307 |
+
n03891251,306,park_bench
|
308 |
+
n02791124,307,barber_chair
|
309 |
+
n04429376,308,throne
|
310 |
+
n03376595,309,folding_chair
|
311 |
+
n04099969,310,rocking_chair
|
312 |
+
n04344873,311,studio_couch
|
313 |
+
n04447861,312,toilet_seat
|
314 |
+
n03179701,313,desk
|
315 |
+
n03982430,314,pool_table
|
316 |
+
n03201208,315,dining_table
|
317 |
+
n03290653,316,entertainment_center
|
318 |
+
n04550184,317,wardrobe
|
319 |
+
n07742313,318,Granny_Smith
|
320 |
+
n07747607,319,orange
|
321 |
+
n07749582,320,lemon
|
322 |
+
n07753113,321,fig
|
323 |
+
n07753275,322,pineapple
|
324 |
+
n07753592,323,banana
|
325 |
+
n07754684,324,jackfruit
|
326 |
+
n07760859,325,custard_apple
|
327 |
+
n07768694,326,pomegranate
|
328 |
+
n12267677,327,acorn
|
329 |
+
n12620546,328,hip
|
330 |
+
n13133613,329,ear
|
331 |
+
n11879895,330,rapeseed
|
332 |
+
n12144580,331,corn
|
333 |
+
n12768682,332,buckeye
|
334 |
+
n03854065,333,organ
|
335 |
+
n04515003,334,upright
|
336 |
+
n03017168,335,chime
|
337 |
+
n03249569,336,drum
|
338 |
+
n03447721,337,gong
|
339 |
+
n03720891,338,maraca
|
340 |
+
n03721384,339,marimba
|
341 |
+
n04311174,340,steel_drum
|
342 |
+
n02787622,341,banjo
|
343 |
+
n02992211,342,cello
|
344 |
+
n04536866,343,violin
|
345 |
+
n03495258,344,harp
|
346 |
+
n02676566,345,acoustic_guitar
|
347 |
+
n03272010,346,electric_guitar
|
348 |
+
n03110669,347,cornet
|
349 |
+
n03394916,348,French_horn
|
350 |
+
n04487394,349,trombone
|
351 |
+
n03494278,350,harmonica
|
352 |
+
n03840681,351,ocarina
|
353 |
+
n03884397,352,panpipe
|
354 |
+
n02804610,353,bassoon
|
355 |
+
n03838899,354,oboe
|
356 |
+
n04141076,355,sax
|
357 |
+
n03372029,356,flute
|
358 |
+
n11939491,357,daisy
|
359 |
+
n12057211,358,yellow_lady's_slipper
|
360 |
+
n09246464,359,cliff
|
361 |
+
n09468604,360,valley
|
362 |
+
n09193705,361,alp
|
363 |
+
n09472597,362,volcano
|
364 |
+
n09399592,363,promontory
|
365 |
+
n09421951,364,sandbar
|
366 |
+
n09256479,365,coral_reef
|
367 |
+
n09332890,366,lakeside
|
368 |
+
n09428293,367,seashore
|
369 |
+
n09288635,368,geyser
|
370 |
+
n03498962,369,hatchet
|
371 |
+
n03041632,370,cleaver
|
372 |
+
n03658185,371,letter_opener
|
373 |
+
n03954731,372,plane
|
374 |
+
n03995372,373,power_drill
|
375 |
+
n03649909,374,lawn_mower
|
376 |
+
n03481172,375,hammer
|
377 |
+
n03109150,376,corkscrew
|
378 |
+
n02951585,377,can_opener
|
379 |
+
n03970156,378,plunger
|
380 |
+
n04154565,379,screwdriver
|
381 |
+
n04208210,380,shovel
|
382 |
+
n03967562,381,plow
|
383 |
+
n03000684,382,chain_saw
|
384 |
+
n01514668,383,cock
|
385 |
+
n01514859,384,hen
|
386 |
+
n01518878,385,ostrich
|
387 |
+
n01530575,386,brambling
|
388 |
+
n01531178,387,goldfinch
|
389 |
+
n01532829,388,house_finch
|
390 |
+
n01534433,389,junco
|
391 |
+
n01537544,390,indigo_bunting
|
392 |
+
n01558993,391,robin
|
393 |
+
n01560419,392,bulbul
|
394 |
+
n01580077,393,jay
|
395 |
+
n01582220,394,magpie
|
396 |
+
n01592084,395,chickadee
|
397 |
+
n01601694,396,water_ouzel
|
398 |
+
n01608432,397,kite
|
399 |
+
n01614925,398,bald_eagle
|
400 |
+
n01616318,399,vulture
|
401 |
+
n01622779,400,great_grey_owl
|
402 |
+
n01795545,401,black_grouse
|
403 |
+
n01796340,402,ptarmigan
|
404 |
+
n01797886,403,ruffed_grouse
|
405 |
+
n01798484,404,prairie_chicken
|
406 |
+
n01806143,405,peacock
|
407 |
+
n01806567,406,quail
|
408 |
+
n01807496,407,partridge
|
409 |
+
n01817953,408,African_grey
|
410 |
+
n01818515,409,macaw
|
411 |
+
n01819313,410,sulphur-crested_cockatoo
|
412 |
+
n01820546,411,lorikeet
|
413 |
+
n01824575,412,coucal
|
414 |
+
n01828970,413,bee_eater
|
415 |
+
n01829413,414,hornbill
|
416 |
+
n01833805,415,hummingbird
|
417 |
+
n01843065,416,jacamar
|
418 |
+
n01843383,417,toucan
|
419 |
+
n01847000,418,drake
|
420 |
+
n01855032,419,red-breasted_merganser
|
421 |
+
n01855672,420,goose
|
422 |
+
n01860187,421,black_swan
|
423 |
+
n02002556,422,white_stork
|
424 |
+
n02002724,423,black_stork
|
425 |
+
n02006656,424,spoonbill
|
426 |
+
n02007558,425,flamingo
|
427 |
+
n02009912,426,American_egret
|
428 |
+
n02009229,427,little_blue_heron
|
429 |
+
n02011460,428,bittern
|
430 |
+
n02012849,429,crane
|
431 |
+
n02013706,430,limpkin
|
432 |
+
n02018207,431,American_coot
|
433 |
+
n02018795,432,bustard
|
434 |
+
n02025239,433,ruddy_turnstone
|
435 |
+
n02027492,434,red-backed_sandpiper
|
436 |
+
n02028035,435,redshank
|
437 |
+
n02033041,436,dowitcher
|
438 |
+
n02037110,437,oystercatcher
|
439 |
+
n02017213,438,European_gallinule
|
440 |
+
n02051845,439,pelican
|
441 |
+
n02056570,440,king_penguin
|
442 |
+
n02058221,441,albatross
|
443 |
+
n01484850,442,great_white_shark
|
444 |
+
n01491361,443,tiger_shark
|
445 |
+
n01494475,444,hammerhead
|
446 |
+
n01496331,445,electric_ray
|
447 |
+
n01498041,446,stingray
|
448 |
+
n02514041,447,barracouta
|
449 |
+
n02536864,448,coho
|
450 |
+
n01440764,449,tench
|
451 |
+
n01443537,450,goldfish
|
452 |
+
n02526121,451,eel
|
453 |
+
n02606052,452,rock_beauty
|
454 |
+
n02607072,453,anemone_fish
|
455 |
+
n02643566,454,lionfish
|
456 |
+
n02655020,455,puffer
|
457 |
+
n02640242,456,sturgeon
|
458 |
+
n02641379,457,gar
|
459 |
+
n01664065,458,loggerhead
|
460 |
+
n01665541,459,leatherback_turtle
|
461 |
+
n01667114,460,mud_turtle
|
462 |
+
n01667778,461,terrapin
|
463 |
+
n01669191,462,box_turtle
|
464 |
+
n01675722,463,banded_gecko
|
465 |
+
n01677366,464,common_iguana
|
466 |
+
n01682714,465,American_chameleon
|
467 |
+
n01685808,466,whiptail
|
468 |
+
n01687978,467,agama
|
469 |
+
n01688243,468,frilled_lizard
|
470 |
+
n01689811,469,alligator_lizard
|
471 |
+
n01692333,470,Gila_monster
|
472 |
+
n01693334,471,green_lizard
|
473 |
+
n01694178,472,African_chameleon
|
474 |
+
n01695060,473,Komodo_dragon
|
475 |
+
n01704323,474,triceratops
|
476 |
+
n01697457,475,African_crocodile
|
477 |
+
n01698640,476,American_alligator
|
478 |
+
n01728572,477,thunder_snake
|
479 |
+
n01728920,478,ringneck_snake
|
480 |
+
n01729322,479,hognose_snake
|
481 |
+
n01729977,480,green_snake
|
482 |
+
n01734418,481,king_snake
|
483 |
+
n01735189,482,garter_snake
|
484 |
+
n01737021,483,water_snake
|
485 |
+
n01739381,484,vine_snake
|
486 |
+
n01740131,485,night_snake
|
487 |
+
n01742172,486,boa_constrictor
|
488 |
+
n01744401,487,rock_python
|
489 |
+
n01748264,488,Indian_cobra
|
490 |
+
n01749939,489,green_mamba
|
491 |
+
n01751748,490,sea_snake
|
492 |
+
n01753488,491,horned_viper
|
493 |
+
n01755581,492,diamondback
|
494 |
+
n01756291,493,sidewinder
|
495 |
+
n01629819,494,European_fire_salamander
|
496 |
+
n01630670,495,common_newt
|
497 |
+
n01631663,496,eft
|
498 |
+
n01632458,497,spotted_salamander
|
499 |
+
n01632777,498,axolotl
|
500 |
+
n01641577,499,bullfrog
|
501 |
+
n01644373,500,tree_frog
|
502 |
+
n01644900,501,tailed_frog
|
503 |
+
n04579432,502,whistle
|
504 |
+
n04592741,503,wing
|
505 |
+
n03876231,504,paintbrush
|
506 |
+
n03483316,505,hand_blower
|
507 |
+
n03868863,506,oxygen_mask
|
508 |
+
n04251144,507,snorkel
|
509 |
+
n03691459,508,loudspeaker
|
510 |
+
n03759954,509,microphone
|
511 |
+
n04152593,510,screen
|
512 |
+
n03793489,511,mouse
|
513 |
+
n03271574,512,electric_fan
|
514 |
+
n03843555,513,oil_filter
|
515 |
+
n04332243,514,strainer
|
516 |
+
n04265275,515,space_heater
|
517 |
+
n04330267,516,stove
|
518 |
+
n03467068,517,guillotine
|
519 |
+
n02794156,518,barometer
|
520 |
+
n04118776,519,rule
|
521 |
+
n03841143,520,odometer
|
522 |
+
n04141975,521,scale
|
523 |
+
n02708093,522,analog_clock
|
524 |
+
n03196217,523,digital_clock
|
525 |
+
n04548280,524,wall_clock
|
526 |
+
n03544143,525,hourglass
|
527 |
+
n04355338,526,sundial
|
528 |
+
n03891332,527,parking_meter
|
529 |
+
n04328186,528,stopwatch
|
530 |
+
n03197337,529,digital_watch
|
531 |
+
n04317175,530,stethoscope
|
532 |
+
n04376876,531,syringe
|
533 |
+
n03706229,532,magnetic_compass
|
534 |
+
n02841315,533,binoculars
|
535 |
+
n04009552,534,projector
|
536 |
+
n04356056,535,sunglasses
|
537 |
+
n03692522,536,loupe
|
538 |
+
n04044716,537,radio_telescope
|
539 |
+
n02879718,538,bow
|
540 |
+
n02950826,539,cannon
|
541 |
+
n02749479,540,assault_rifle
|
542 |
+
n04090263,541,rifle
|
543 |
+
n04008634,542,projectile
|
544 |
+
n03085013,543,computer_keyboard
|
545 |
+
n04505470,544,typewriter_keyboard
|
546 |
+
n03126707,545,crane
|
547 |
+
n03666591,546,lighter
|
548 |
+
n02666196,547,abacus
|
549 |
+
n02977058,548,cash_machine
|
550 |
+
n04238763,549,slide_rule
|
551 |
+
n03180011,550,desktop_computer
|
552 |
+
n03485407,551,hand-held_computer
|
553 |
+
n03832673,552,notebook
|
554 |
+
n06359193,553,web_site
|
555 |
+
n03496892,554,harvester
|
556 |
+
n04428191,555,thresher
|
557 |
+
n04004767,556,printer
|
558 |
+
n04243546,557,slot
|
559 |
+
n04525305,558,vending_machine
|
560 |
+
n04179913,559,sewing_machine
|
561 |
+
n03602883,560,joystick
|
562 |
+
n04372370,561,switch
|
563 |
+
n03532672,562,hook
|
564 |
+
n02974003,563,car_wheel
|
565 |
+
n03874293,564,paddlewheel
|
566 |
+
n03944341,565,pinwheel
|
567 |
+
n03992509,566,potter's_wheel
|
568 |
+
n03425413,567,gas_pump
|
569 |
+
n02966193,568,carousel
|
570 |
+
n04371774,569,swing
|
571 |
+
n04067472,570,reel
|
572 |
+
n04040759,571,radiator
|
573 |
+
n04019541,572,puck
|
574 |
+
n03492542,573,hard_disc
|
575 |
+
n04355933,574,sunglass
|
576 |
+
n03929660,575,pick
|
577 |
+
n02965783,576,car_mirror
|
578 |
+
n04258138,577,solar_dish
|
579 |
+
n04074963,578,remote_control
|
580 |
+
n03208938,579,disk_brake
|
581 |
+
n02910353,580,buckle
|
582 |
+
n03476684,581,hair_slide
|
583 |
+
n03627232,582,knot
|
584 |
+
n03075370,583,combination_lock
|
585 |
+
n03874599,584,padlock
|
586 |
+
n03804744,585,nail
|
587 |
+
n04127249,586,safety_pin
|
588 |
+
n04153751,587,screw
|
589 |
+
n03803284,588,muzzle
|
590 |
+
n04162706,589,seat_belt
|
591 |
+
n04228054,590,ski
|
592 |
+
n02948072,591,candle
|
593 |
+
n03590841,592,jack-o'-lantern
|
594 |
+
n04286575,593,spotlight
|
595 |
+
n04456115,594,torch
|
596 |
+
n03814639,595,neck_brace
|
597 |
+
n03933933,596,pier
|
598 |
+
n04485082,597,tripod
|
599 |
+
n03733131,598,maypole
|
600 |
+
n03794056,599,mousetrap
|
601 |
+
n04275548,600,spider_web
|
602 |
+
n01768244,601,trilobite
|
603 |
+
n01770081,602,harvestman
|
604 |
+
n01770393,603,scorpion
|
605 |
+
n01773157,604,black_and_gold_garden_spider
|
606 |
+
n01773549,605,barn_spider
|
607 |
+
n01773797,606,garden_spider
|
608 |
+
n01774384,607,black_widow
|
609 |
+
n01774750,608,tarantula
|
610 |
+
n01775062,609,wolf_spider
|
611 |
+
n01776313,610,tick
|
612 |
+
n01784675,611,centipede
|
613 |
+
n01990800,612,isopod
|
614 |
+
n01978287,613,Dungeness_crab
|
615 |
+
n01978455,614,rock_crab
|
616 |
+
n01980166,615,fiddler_crab
|
617 |
+
n01981276,616,king_crab
|
618 |
+
n01983481,617,American_lobster
|
619 |
+
n01984695,618,spiny_lobster
|
620 |
+
n01985128,619,crayfish
|
621 |
+
n01986214,620,hermit_crab
|
622 |
+
n02165105,621,tiger_beetle
|
623 |
+
n02165456,622,ladybug
|
624 |
+
n02167151,623,ground_beetle
|
625 |
+
n02168699,624,long-horned_beetle
|
626 |
+
n02169497,625,leaf_beetle
|
627 |
+
n02172182,626,dung_beetle
|
628 |
+
n02174001,627,rhinoceros_beetle
|
629 |
+
n02177972,628,weevil
|
630 |
+
n02190166,629,fly
|
631 |
+
n02206856,630,bee
|
632 |
+
n02226429,631,grasshopper
|
633 |
+
n02229544,632,cricket
|
634 |
+
n02231487,633,walking_stick
|
635 |
+
n02233338,634,cockroach
|
636 |
+
n02236044,635,mantis
|
637 |
+
n02256656,636,cicada
|
638 |
+
n02259212,637,leafhopper
|
639 |
+
n02264363,638,lacewing
|
640 |
+
n02268443,639,dragonfly
|
641 |
+
n02268853,640,damselfly
|
642 |
+
n02276258,641,admiral
|
643 |
+
n02277742,642,ringlet
|
644 |
+
n02279972,643,monarch
|
645 |
+
n02280649,644,cabbage_butterfly
|
646 |
+
n02281406,645,sulphur_butterfly
|
647 |
+
n02281787,646,lycaenid
|
648 |
+
n01910747,647,jellyfish
|
649 |
+
n01914609,648,sea_anemone
|
650 |
+
n01917289,649,brain_coral
|
651 |
+
n01924916,650,flatworm
|
652 |
+
n01930112,651,nematode
|
653 |
+
n01943899,652,conch
|
654 |
+
n01944390,653,snail
|
655 |
+
n01945685,654,slug
|
656 |
+
n01950731,655,sea_slug
|
657 |
+
n01955084,656,chiton
|
658 |
+
n02319095,657,sea_urchin
|
659 |
+
n02321529,658,sea_cucumber
|
660 |
+
n03584829,659,iron
|
661 |
+
n03297495,660,espresso_maker
|
662 |
+
n03761084,661,microwave
|
663 |
+
n03259280,662,Dutch_oven
|
664 |
+
n04111531,663,rotisserie
|
665 |
+
n04442312,664,toaster
|
666 |
+
n04542943,665,waffle_iron
|
667 |
+
n04517823,666,vacuum
|
668 |
+
n03207941,667,dishwasher
|
669 |
+
n04070727,668,refrigerator
|
670 |
+
n04554684,669,washer
|
671 |
+
n03133878,670,Crock_Pot
|
672 |
+
n03400231,671,frying_pan
|
673 |
+
n04596742,672,wok
|
674 |
+
n02939185,673,caldron
|
675 |
+
n03063689,674,coffeepot
|
676 |
+
n04398044,675,teapot
|
677 |
+
n04270147,676,spatula
|
678 |
+
n02699494,677,altar
|
679 |
+
n04486054,678,triumphal_arch
|
680 |
+
n03899768,679,patio
|
681 |
+
n04311004,680,steel_arch_bridge
|
682 |
+
n04366367,681,suspension_bridge
|
683 |
+
n04532670,682,viaduct
|
684 |
+
n02793495,683,barn
|
685 |
+
n03457902,684,greenhouse
|
686 |
+
n03877845,685,palace
|
687 |
+
n03781244,686,monastery
|
688 |
+
n03661043,687,library
|
689 |
+
n02727426,688,apiary
|
690 |
+
n02859443,689,boathouse
|
691 |
+
n03028079,690,church
|
692 |
+
n03788195,691,mosque
|
693 |
+
n04346328,692,stupa
|
694 |
+
n03956157,693,planetarium
|
695 |
+
n04081281,694,restaurant
|
696 |
+
n03032252,695,cinema
|
697 |
+
n03529860,696,home_theater
|
698 |
+
n03697007,697,lumbermill
|
699 |
+
n03065424,698,coil
|
700 |
+
n03837869,699,obelisk
|
701 |
+
n04458633,700,totem_pole
|
702 |
+
n02980441,701,castle
|
703 |
+
n04005630,702,prison
|
704 |
+
n03461385,703,grocery_store
|
705 |
+
n02776631,704,bakery
|
706 |
+
n02791270,705,barbershop
|
707 |
+
n02871525,706,bookshop
|
708 |
+
n02927161,707,butcher_shop
|
709 |
+
n03089624,708,confectionery
|
710 |
+
n04200800,709,shoe_shop
|
711 |
+
n04443257,710,tobacco_shop
|
712 |
+
n04462240,711,toyshop
|
713 |
+
n03388043,712,fountain
|
714 |
+
n03042490,713,cliff_dwelling
|
715 |
+
n04613696,714,yurt
|
716 |
+
n03216828,715,dock
|
717 |
+
n02892201,716,brass
|
718 |
+
n03743016,717,megalith
|
719 |
+
n02788148,718,bannister
|
720 |
+
n02894605,719,breakwater
|
721 |
+
n03160309,720,dam
|
722 |
+
n03000134,721,chainlink_fence
|
723 |
+
n03930313,722,picket_fence
|
724 |
+
n04604644,723,worm_fence
|
725 |
+
n04326547,724,stone_wall
|
726 |
+
n03459775,725,grille
|
727 |
+
n04239074,726,sliding_door
|
728 |
+
n04501370,727,turnstile
|
729 |
+
n03792972,728,mountain_tent
|
730 |
+
n04149813,729,scoreboard
|
731 |
+
n03530642,730,honeycomb
|
732 |
+
n03961711,731,plate_rack
|
733 |
+
n03903868,732,pedestal
|
734 |
+
n02814860,733,beacon
|
735 |
+
n07711569,734,mashed_potato
|
736 |
+
n07720875,735,bell_pepper
|
737 |
+
n07714571,736,head_cabbage
|
738 |
+
n07714990,737,broccoli
|
739 |
+
n07715103,738,cauliflower
|
740 |
+
n07716358,739,zucchini
|
741 |
+
n07716906,740,spaghetti_squash
|
742 |
+
n07717410,741,acorn_squash
|
743 |
+
n07717556,742,butternut_squash
|
744 |
+
n07718472,743,cucumber
|
745 |
+
n07718747,744,artichoke
|
746 |
+
n07730033,745,cardoon
|
747 |
+
n07734744,746,mushroom
|
748 |
+
n04209239,747,shower_curtain
|
749 |
+
n03594734,748,jean
|
750 |
+
n02971356,749,carton
|
751 |
+
n03485794,750,handkerchief
|
752 |
+
n04133789,751,sandal
|
753 |
+
n02747177,752,ashcan
|
754 |
+
n04125021,753,safe
|
755 |
+
n07579787,754,plate
|
756 |
+
n03814906,755,necklace
|
757 |
+
n03134739,756,croquet_ball
|
758 |
+
n03404251,757,fur_coat
|
759 |
+
n04423845,758,thimble
|
760 |
+
n03877472,759,pajama
|
761 |
+
n04120489,760,running_shoe
|
762 |
+
n03062245,761,cocktail_shaker
|
763 |
+
n03014705,762,chest
|
764 |
+
n03717622,763,manhole_cover
|
765 |
+
n03777754,764,modem
|
766 |
+
n04493381,765,tub
|
767 |
+
n04476259,766,tray
|
768 |
+
n02777292,767,balance_beam
|
769 |
+
n07693725,768,bagel
|
770 |
+
n03998194,769,prayer_rug
|
771 |
+
n03617480,770,kimono
|
772 |
+
n07590611,771,hot_pot
|
773 |
+
n04579145,772,whiskey_jug
|
774 |
+
n03623198,773,knee_pad
|
775 |
+
n07248320,774,book_jacket
|
776 |
+
n04277352,775,spindle
|
777 |
+
n04229816,776,ski_mask
|
778 |
+
n02823428,777,beer_bottle
|
779 |
+
n03127747,778,crash_helmet
|
780 |
+
n02877765,779,bottlecap
|
781 |
+
n04435653,780,tile_roof
|
782 |
+
n03724870,781,mask
|
783 |
+
n03710637,782,maillot
|
784 |
+
n03920288,783,Petri_dish
|
785 |
+
n03379051,784,football_helmet
|
786 |
+
n02807133,785,bathing_cap
|
787 |
+
n04399382,786,teddy
|
788 |
+
n03527444,787,holster
|
789 |
+
n03983396,788,pop_bottle
|
790 |
+
n03924679,789,photocopier
|
791 |
+
n04532106,790,vestment
|
792 |
+
n06785654,791,crossword_puzzle
|
793 |
+
n03445777,792,golf_ball
|
794 |
+
n07613480,793,trifle
|
795 |
+
n04350905,794,suit
|
796 |
+
n04562935,795,water_tower
|
797 |
+
n03325584,796,feather_boa
|
798 |
+
n03045698,797,cloak
|
799 |
+
n07892512,798,red_wine
|
800 |
+
n03250847,799,drumstick
|
801 |
+
n04192698,800,shield
|
802 |
+
n03026506,801,Christmas_stocking
|
803 |
+
n03534580,802,hoopskirt
|
804 |
+
n07565083,803,menu
|
805 |
+
n04296562,804,stage
|
806 |
+
n02869837,805,bonnet
|
807 |
+
n07871810,806,meat_loaf
|
808 |
+
n02799071,807,baseball
|
809 |
+
n03314780,808,face_powder
|
810 |
+
n04141327,809,scabbard
|
811 |
+
n04357314,810,sunscreen
|
812 |
+
n02823750,811,beer_glass
|
813 |
+
n13052670,812,hen-of-the-woods
|
814 |
+
n07583066,813,guacamole
|
815 |
+
n03637318,814,lampshade
|
816 |
+
n04599235,815,wool
|
817 |
+
n07802026,816,hay
|
818 |
+
n02883205,817,bow_tie
|
819 |
+
n03709823,818,mailbag
|
820 |
+
n04560804,819,water_jug
|
821 |
+
n02909870,820,bucket
|
822 |
+
n03207743,821,dishrag
|
823 |
+
n04263257,822,soup_bowl
|
824 |
+
n07932039,823,eggnog
|
825 |
+
n03786901,824,mortar
|
826 |
+
n04479046,825,trench_coat
|
827 |
+
n03873416,826,paddle
|
828 |
+
n02999410,827,chain
|
829 |
+
n04367480,828,swab
|
830 |
+
n03775546,829,mixing_bowl
|
831 |
+
n07875152,830,potpie
|
832 |
+
n04591713,831,wine_bottle
|
833 |
+
n04201297,832,shoji
|
834 |
+
n02916936,833,bulletproof_vest
|
835 |
+
n03240683,834,drilling_platform
|
836 |
+
n02840245,835,binder
|
837 |
+
n02963159,836,cardigan
|
838 |
+
n04370456,837,sweatshirt
|
839 |
+
n03991062,838,pot
|
840 |
+
n02843684,839,birdhouse
|
841 |
+
n03482405,840,hamper
|
842 |
+
n03942813,841,ping-pong_ball
|
843 |
+
n03908618,842,pencil_box
|
844 |
+
n03902125,843,pay-phone
|
845 |
+
n07584110,844,consomme
|
846 |
+
n02730930,845,apron
|
847 |
+
n04023962,846,punching_bag
|
848 |
+
n02769748,847,backpack
|
849 |
+
n10148035,848,groom
|
850 |
+
n02817516,849,bearskin
|
851 |
+
n03908714,850,pencil_sharpener
|
852 |
+
n02906734,851,broom
|
853 |
+
n03788365,852,mosquito_net
|
854 |
+
n02667093,853,abaya
|
855 |
+
n03787032,854,mortarboard
|
856 |
+
n03980874,855,poncho
|
857 |
+
n03141823,856,crutch
|
858 |
+
n03976467,857,Polaroid_camera
|
859 |
+
n04264628,858,space_bar
|
860 |
+
n07930864,859,cup
|
861 |
+
n04039381,860,racket
|
862 |
+
n06874185,861,traffic_light
|
863 |
+
n04033901,862,quill
|
864 |
+
n04041544,863,radio
|
865 |
+
n07860988,864,dough
|
866 |
+
n03146219,865,cuirass
|
867 |
+
n03763968,866,military_uniform
|
868 |
+
n03676483,867,lipstick
|
869 |
+
n04209133,868,shower_cap
|
870 |
+
n03782006,869,monitor
|
871 |
+
n03857828,870,oscilloscope
|
872 |
+
n03775071,871,mitten
|
873 |
+
n02892767,872,brassiere
|
874 |
+
n07684084,873,French_loaf
|
875 |
+
n04522168,874,vase
|
876 |
+
n03764736,875,milk_can
|
877 |
+
n04118538,876,rugby_ball
|
878 |
+
n03887697,877,paper_towel
|
879 |
+
n13044778,878,earthstar
|
880 |
+
n03291819,879,envelope
|
881 |
+
n03770439,880,miniskirt
|
882 |
+
n03124170,881,cowboy_hat
|
883 |
+
n04487081,882,trolleybus
|
884 |
+
n03916031,883,perfume
|
885 |
+
n02808440,884,bathtub
|
886 |
+
n07697537,885,hotdog
|
887 |
+
n12985857,886,coral_fungus
|
888 |
+
n02917067,887,bullet_train
|
889 |
+
n03938244,888,pillow
|
890 |
+
n15075141,889,toilet_tissue
|
891 |
+
n02978881,890,cassette
|
892 |
+
n02966687,891,carpenter's_kit
|
893 |
+
n03633091,892,ladle
|
894 |
+
n13040303,893,stinkhorn
|
895 |
+
n03690938,894,lotion
|
896 |
+
n03476991,895,hair_spray
|
897 |
+
n02669723,896,academic_gown
|
898 |
+
n03220513,897,dome
|
899 |
+
n03127925,898,crate
|
900 |
+
n04584207,899,wig
|
901 |
+
n07880968,900,burrito
|
902 |
+
n03937543,901,pill_bottle
|
903 |
+
n03000247,902,chain_mail
|
904 |
+
n04418357,903,theater_curtain
|
905 |
+
n04590129,904,window_shade
|
906 |
+
n02795169,905,barrel
|
907 |
+
n04553703,906,washbasin
|
908 |
+
n02783161,907,ballpoint
|
909 |
+
n02802426,908,basketball
|
910 |
+
n02808304,909,bath_towel
|
911 |
+
n03124043,910,cowboy_boot
|
912 |
+
n03450230,911,gown
|
913 |
+
n04589890,912,window_screen
|
914 |
+
n12998815,913,agaric
|
915 |
+
n02992529,914,cellular_telephone
|
916 |
+
n03825788,915,nipple
|
917 |
+
n02790996,916,barbell
|
918 |
+
n03710193,917,mailbox
|
919 |
+
n03630383,918,lab_coat
|
920 |
+
n03347037,919,fire_screen
|
921 |
+
n03769881,920,minibus
|
922 |
+
n03871628,921,packet
|
923 |
+
n03733281,922,maze
|
924 |
+
n03976657,923,pole
|
925 |
+
n03535780,924,horizontal_bar
|
926 |
+
n04259630,925,sombrero
|
927 |
+
n03929855,926,pickelhaube
|
928 |
+
n04049303,927,rain_barrel
|
929 |
+
n04548362,928,wallet
|
930 |
+
n02979186,929,cassette_player
|
931 |
+
n06596364,930,comic_book
|
932 |
+
n03935335,931,piggy_bank
|
933 |
+
n06794110,932,street_sign
|
934 |
+
n02825657,933,bell_cote
|
935 |
+
n03388183,934,fountain_pen
|
936 |
+
n04591157,935,Windsor_tie
|
937 |
+
n04540053,936,volleyball
|
938 |
+
n03866082,937,overskirt
|
939 |
+
n04136333,938,sarong
|
940 |
+
n04026417,939,purse
|
941 |
+
n02865351,940,bolo_tie
|
942 |
+
n02834397,941,bib
|
943 |
+
n03888257,942,parachute
|
944 |
+
n04235860,943,sleeping_bag
|
945 |
+
n04404412,944,television
|
946 |
+
n04371430,945,swimming_trunks
|
947 |
+
n03733805,946,measuring_cup
|
948 |
+
n07920052,947,espresso
|
949 |
+
n07873807,948,pizza
|
950 |
+
n02895154,949,breastplate
|
951 |
+
n04204238,950,shopping_basket
|
952 |
+
n04597913,951,wooden_spoon
|
953 |
+
n04131690,952,saltshaker
|
954 |
+
n07836838,953,chocolate_sauce
|
955 |
+
n09835506,954,ballplayer
|
956 |
+
n03443371,955,goblet
|
957 |
+
n13037406,956,gyromitra
|
958 |
+
n04336792,957,stretcher
|
959 |
+
n04557648,958,water_bottle
|
960 |
+
n03187595,959,dial_telephone
|
961 |
+
n04254120,960,soap_dispenser
|
962 |
+
n03595614,961,jersey
|
963 |
+
n04146614,962,school_bus
|
964 |
+
n03598930,963,jigsaw_puzzle
|
965 |
+
n03958227,964,plastic_bag
|
966 |
+
n04069434,965,reflex_camera
|
967 |
+
n03188531,966,diaper
|
968 |
+
n02786058,967,Band_Aid
|
969 |
+
n07615774,968,ice_lolly
|
970 |
+
n04525038,969,velvet
|
971 |
+
n04409515,970,tennis_ball
|
972 |
+
n03424325,971,gasmask
|
973 |
+
n03223299,972,doormat
|
974 |
+
n03680355,973,Loafer
|
975 |
+
n07614500,974,ice_cream
|
976 |
+
n07695742,975,pretzel
|
977 |
+
n04033995,976,quilt
|
978 |
+
n03710721,977,maillot
|
979 |
+
n04392985,978,tape_player
|
980 |
+
n03047690,979,clog
|
981 |
+
n03584254,980,iPod
|
982 |
+
n13054560,981,bolete
|
983 |
+
n10565667,982,scuba_diver
|
984 |
+
n03950228,983,pitcher
|
985 |
+
n03729826,984,matchstick
|
986 |
+
n02837789,985,bikini
|
987 |
+
n04254777,986,sock
|
988 |
+
n02988304,987,CD_player
|
989 |
+
n03657121,988,lens_cap
|
990 |
+
n04417672,989,thatch
|
991 |
+
n04523525,990,vault
|
992 |
+
n02815834,991,beaker
|
993 |
+
n09229709,992,bubble
|
994 |
+
n07697313,993,cheeseburger
|
995 |
+
n03888605,994,parallel_bars
|
996 |
+
n03355925,995,flagpole
|
997 |
+
n03063599,996,coffee_mug
|
998 |
+
n04116512,997,rubber_eraser
|
999 |
+
n04325704,998,stole
|
1000 |
+
n07831146,999,carbonara
|
1001 |
+
n03255030,1000,dumbbell
|
lightning_imagenet_classification.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
### config
|
5 |
+
|
6 |
+
total_epochs = 100
|
7 |
+
batch_size = 256
|
8 |
+
num_processes = 2
|
9 |
+
image_size = 224
|
10 |
+
drop_path = 0.05
|
11 |
+
## Loss Function - CE (but try BCE)
|
12 |
+
# Always choose "SGD" for CNNs and AdamW for ViTs - SGD is Difficult to Converge || We should use LAMB with Cosine LR
|
13 |
+
## Multi-label --> Mixup and CutMix
|
14 |
+
LR = 5e-3
|
15 |
+
weight_decay = 0.05
|
16 |
+
warmup_epoch = 5
|
17 |
+
dropout = 0
|
18 |
+
drop_path = 0.05
|
19 |
+
|
20 |
+
|
21 |
+
# In[5]:
|
22 |
+
|
23 |
+
|
24 |
+
import wandb
|
25 |
+
|
26 |
+
wandb_token = "e653df8526c77d083379de033d13342620583fdf"
|
27 |
+
|
28 |
+
wandb.login(key=wandb_token)
|
29 |
+
|
30 |
+
|
31 |
+
# In[7]:
|
32 |
+
|
33 |
+
|
34 |
+
import torch
|
35 |
+
import torch.nn as nn
|
36 |
+
from PIL import Image
|
37 |
+
import numpy as np
|
38 |
+
import pandas as pd
|
39 |
+
|
40 |
+
|
41 |
+
import albumentations
|
42 |
+
|
43 |
+
train_aug = albumentations.Compose(
|
44 |
+
[
|
45 |
+
albumentations.Resize(image_size, image_size, p=1),
|
46 |
+
albumentations.ShiftScaleRotate(
|
47 |
+
shift_limit=0.0625, scale_limit=0.1, rotate_limit=10, p=0.8
|
48 |
+
),
|
49 |
+
albumentations.OneOf(
|
50 |
+
[
|
51 |
+
albumentations.RandomGamma(gamma_limit=(90, 110)),
|
52 |
+
albumentations.RandomBrightnessContrast(
|
53 |
+
brightness_limit=0.1, contrast_limit=0.1
|
54 |
+
),
|
55 |
+
],
|
56 |
+
p=0.5,
|
57 |
+
),
|
58 |
+
albumentations.HorizontalFlip(),
|
59 |
+
albumentations.Normalize(
|
60 |
+
mean=[0.485, 0.456, 0.406],
|
61 |
+
std=[0.229, 0.224, 0.225],
|
62 |
+
max_pixel_value=255.0,
|
63 |
+
p=1.0,
|
64 |
+
),
|
65 |
+
],
|
66 |
+
p=1.0,
|
67 |
+
)
|
68 |
+
|
69 |
+
valid_aug = albumentations.Compose(
|
70 |
+
[
|
71 |
+
albumentations.Resize(image_size, image_size, p=1),
|
72 |
+
albumentations.Normalize(
|
73 |
+
mean=[0.485, 0.456, 0.406],
|
74 |
+
std=[0.229, 0.224, 0.225],
|
75 |
+
max_pixel_value=255.0,
|
76 |
+
p=1.0,
|
77 |
+
),
|
78 |
+
],
|
79 |
+
p=1.0,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
class ImageNetDataset(torch.utils.data.Dataset):
|
84 |
+
def __init__(self, image_path, augmentations=None, train=True):
|
85 |
+
self.image_path = image_path
|
86 |
+
self.augmentations = augmentations
|
87 |
+
self.df = pd.read_csv(
|
88 |
+
"/home/ubuntu/training/training/imagenet_class_labels.csv"
|
89 |
+
)
|
90 |
+
self.valid_df = pd.read_csv(
|
91 |
+
"/home/ubuntu/training/training/validation_classes.csv"
|
92 |
+
)
|
93 |
+
self.train = train
|
94 |
+
|
95 |
+
def __len__(self):
|
96 |
+
return len(self.image_path)
|
97 |
+
|
98 |
+
def __getitem__(self, item):
|
99 |
+
image_path = self.image_path[item]
|
100 |
+
with Image.open(image_path) as img:
|
101 |
+
image = img.convert("RGB")
|
102 |
+
image = np.asarray(image)
|
103 |
+
|
104 |
+
## center crop 95% area
|
105 |
+
H, W, C = image.shape
|
106 |
+
image = image[int(0.04 * H) : int(0.96 * H), int(0.04 * W) : int(0.96 * W), :]
|
107 |
+
|
108 |
+
if self.train:
|
109 |
+
class_id = str(self.image_path[item].split("/")[-2])
|
110 |
+
targets = self.df[self.df["Index"] == class_id]["ID"].values[0] - 1
|
111 |
+
else:
|
112 |
+
class_id = str(self.image_path[item].split("/")[-1][:-5])
|
113 |
+
targets = (
|
114 |
+
self.valid_df[self.valid_df["ImageId"] == class_id]["LabelId"].values[0]
|
115 |
+
- 1
|
116 |
+
)
|
117 |
+
|
118 |
+
if self.augmentations is not None:
|
119 |
+
augmented = self.augmentations(image=image)
|
120 |
+
image = augmented["image"]
|
121 |
+
|
122 |
+
image = np.transpose(image, (2, 0, 1)).astype(np.float32)
|
123 |
+
|
124 |
+
return {
|
125 |
+
"image": torch.tensor(image, dtype=torch.float),
|
126 |
+
"targets": torch.tensor(targets, dtype=torch.long),
|
127 |
+
}
|
128 |
+
|
129 |
+
|
130 |
+
from timm.data.mixup import Mixup
|
131 |
+
|
132 |
+
mixup_args = {
|
133 |
+
"mixup_alpha": 0.1,
|
134 |
+
"cutmix_alpha": 1.0,
|
135 |
+
"cutmix_minmax": None,
|
136 |
+
"prob": 0.7,
|
137 |
+
"switch_prob": 0,
|
138 |
+
"mode": "batch",
|
139 |
+
"label_smoothing": 0.1,
|
140 |
+
"num_classes": 1000,
|
141 |
+
}
|
142 |
+
mixup_fn = Mixup(**mixup_args)
|
143 |
+
|
144 |
+
|
145 |
+
import glob
|
146 |
+
import random
|
147 |
+
|
148 |
+
train_paths = glob.glob(
|
149 |
+
"/home/ubuntu/training/Imagenet/ILSVRC/Data/ImageNet/train/*/*.JPEG"
|
150 |
+
)
|
151 |
+
valid_paths = glob.glob(
|
152 |
+
"/home/ubuntu/training/Imagenet/ILSVRC/Data/ImageNet/val/*.JPEG"
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
import pytorch_lightning as pl
|
157 |
+
from pytorch_lightning.loggers import WandbLogger
|
158 |
+
|
159 |
+
|
160 |
+
import torch
|
161 |
+
from timm import create_model
|
162 |
+
from torchvision import transforms, datasets
|
163 |
+
import pytorch_lightning as L
|
164 |
+
|
165 |
+
# from timm.scheduler.cosine_lr import CosineLRScheduler
|
166 |
+
|
167 |
+
|
168 |
+
class LitClassification(L.LightningModule):
|
169 |
+
def __init__(self):
|
170 |
+
super().__init__()
|
171 |
+
self.model = create_model(
|
172 |
+
"resnet50", pretrained=False, drop_path_rate=drop_path
|
173 |
+
)
|
174 |
+
# model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
|
175 |
+
|
176 |
+
self.loss_fn = torch.nn.CrossEntropyLoss()
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
return self.model(x)
|
180 |
+
|
181 |
+
def training_step(self, batch):
|
182 |
+
images, targets = batch["image"], batch["targets"]
|
183 |
+
outputs = self.model(images)
|
184 |
+
loss = self.loss_fn(outputs, targets)
|
185 |
+
acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
|
186 |
+
self.log("train_loss", loss)
|
187 |
+
self.log(
|
188 |
+
"train_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True
|
189 |
+
)
|
190 |
+
self.log("train_acc5", acc5, on_step=True, on_epoch=True, logger=True)
|
191 |
+
return loss
|
192 |
+
|
193 |
+
def validation_step(self, batch):
|
194 |
+
images, targets = batch["image"], batch["targets"]
|
195 |
+
outputs = self(images)
|
196 |
+
loss = self.loss_fn(outputs, targets)
|
197 |
+
|
198 |
+
acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
|
199 |
+
self.log("valid_loss", loss)
|
200 |
+
self.log("val_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True)
|
201 |
+
self.log("val_acc5", acc5, on_step=True, on_epoch=True)
|
202 |
+
|
203 |
+
@staticmethod
|
204 |
+
def __accuracy(output, target, topk=(1,)):
|
205 |
+
"""Computes the accuracy over the k top predictions for the specified values of k."""
|
206 |
+
with torch.no_grad():
|
207 |
+
maxk = max(topk)
|
208 |
+
batch_size = target.size(0)
|
209 |
+
|
210 |
+
_, pred = output.topk(maxk, 1, True, True)
|
211 |
+
pred = pred.t()
|
212 |
+
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
213 |
+
|
214 |
+
res = []
|
215 |
+
for k in topk:
|
216 |
+
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
|
217 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
218 |
+
return res
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = torch.optim.AdamW(
|
222 |
+
self.parameters(), lr=LR, weight_decay=weight_decay
|
223 |
+
)
|
224 |
+
|
225 |
+
scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
226 |
+
optimizer,
|
227 |
+
max_lr=LR,
|
228 |
+
total_steps=self.trainer.estimated_stepping_batches,
|
229 |
+
epochs=warmup_epoch,
|
230 |
+
steps_per_epoch=None,
|
231 |
+
pct_start=0.3,
|
232 |
+
anneal_strategy="cos",
|
233 |
+
cycle_momentum=True,
|
234 |
+
base_momentum=0.85,
|
235 |
+
max_momentum=0.95,
|
236 |
+
div_factor=25.0,
|
237 |
+
final_div_factor=10000.0,
|
238 |
+
three_phase=False,
|
239 |
+
last_epoch=-1,
|
240 |
+
verbose="deprecated",
|
241 |
+
)
|
242 |
+
return [optimizer], [scheduler]
|
243 |
+
|
244 |
+
def train_dataloader(self):
|
245 |
+
train_dataset = ImageNetDataset(train_paths, train_aug, train=True)
|
246 |
+
train_loader = torch.utils.data.DataLoader(
|
247 |
+
train_dataset,
|
248 |
+
batch_size=batch_size,
|
249 |
+
shuffle=True,
|
250 |
+
num_workers=num_processes,
|
251 |
+
pin_memory=True,
|
252 |
+
)
|
253 |
+
return train_loader
|
254 |
+
|
255 |
+
def val_dataloader(self):
|
256 |
+
valid_dataset = ImageNetDataset(valid_paths, valid_aug, train=False)
|
257 |
+
valid_loader = torch.utils.data.DataLoader(
|
258 |
+
valid_dataset,
|
259 |
+
batch_size=batch_size,
|
260 |
+
shuffle=False,
|
261 |
+
)
|
262 |
+
return valid_loader
|
263 |
+
|
264 |
+
|
265 |
+
L.seed_everything(879246)
|
266 |
+
|
267 |
+
|
268 |
+
wandb_logger = WandbLogger(log_model="all", project="ImageNet_Lightning")
|
269 |
+
|
270 |
+
|
271 |
+
# Initialize a trainer
|
272 |
+
best_checkpoint_callback = L.callbacks.ModelCheckpoint(
|
273 |
+
filename="bestmodel-{epoch}-monitor-{val_acc1}", mode="max"
|
274 |
+
)
|
275 |
+
every_epoch_checkpoint_callback = L.callbacks.ModelCheckpoint(
|
276 |
+
filename="{epoch}_{val_acc1}", every_n_epochs=10
|
277 |
+
)
|
278 |
+
|
279 |
+
trainer = L.Trainer(
|
280 |
+
max_epochs=total_epochs,
|
281 |
+
devices=torch.cuda.device_count(),
|
282 |
+
accelerator="gpu",
|
283 |
+
logger=wandb_logger,
|
284 |
+
# callbacks=[early_stop_callback],
|
285 |
+
precision=16,
|
286 |
+
callbacks=[best_checkpoint_callback, every_epoch_checkpoint_callback],
|
287 |
+
)
|
288 |
+
|
289 |
+
model = LitClassification()
|
290 |
+
|
291 |
+
trainer.fit(
|
292 |
+
model,
|
293 |
+
ckpt_path="/home/ubuntu/training/training/ImageNet_Lightning/h94dnl2b/checkpoints/bestmodel-epoch=32-monitor-val_acc1=62.54399871826172.ckpt",
|
294 |
+
)
|
lightning_model.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as L
|
3 |
+
from timm import create_model
|
4 |
+
|
5 |
+
class LitClassification(L.LightningModule):
|
6 |
+
def __init__(self, drop_path=0.05):
|
7 |
+
super().__init__()
|
8 |
+
self.model = create_model(
|
9 |
+
"resnet50", pretrained=False, drop_path_rate=drop_path
|
10 |
+
)
|
11 |
+
self.loss_fn = torch.nn.CrossEntropyLoss()
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
return self.model(x)
|
15 |
+
|
16 |
+
def training_step(self, batch, batch_idx):
|
17 |
+
images, targets = batch["image"], batch["targets"]
|
18 |
+
outputs = self.model(images)
|
19 |
+
loss = self.loss_fn(outputs, targets)
|
20 |
+
acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
|
21 |
+
self.log("train_loss", loss)
|
22 |
+
self.log(
|
23 |
+
"train_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True
|
24 |
+
)
|
25 |
+
self.log("train_acc5", acc5, on_step=True, on_epoch=True, logger=True)
|
26 |
+
return loss
|
27 |
+
|
28 |
+
def validation_step(self, batch, batch_idx):
|
29 |
+
images, targets = batch["image"], batch["targets"]
|
30 |
+
outputs = self(images)
|
31 |
+
loss = self.loss_fn(outputs, targets)
|
32 |
+
|
33 |
+
acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
|
34 |
+
self.log("valid_loss", loss)
|
35 |
+
self.log("val_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True)
|
36 |
+
self.log("val_acc5", acc5, on_step=True, on_epoch=True)
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def __accuracy(output, target, topk=(1,)):
|
40 |
+
"""Computes the accuracy over the k top predictions for the specified values of k."""
|
41 |
+
with torch.no_grad():
|
42 |
+
maxk = max(topk)
|
43 |
+
batch_size = target.size(0)
|
44 |
+
|
45 |
+
_, pred = output.topk(maxk, 1, True, True)
|
46 |
+
pred = pred.t()
|
47 |
+
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
48 |
+
|
49 |
+
res = []
|
50 |
+
for k in topk:
|
51 |
+
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
|
52 |
+
res.append(correct_k.mul_(100.0 / batch_size))
|
53 |
+
return res
|
sample_imgs/stock-photo-large-hot-dog.jpg
ADDED
![]() |