nishantb06 commited on
Commit
2942581
·
verified ·
1 Parent(s): 0a216f0

other files

Browse files
bestmodel-epoch=46-monitor-val_acc1=63.7760009765625.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b23331d5f080e54f234d9d6c1fc93d7f19eddbc4f0633ff4e2c02638fb0d70a
3
+ size 307148520
imagenet_class_labels.csv ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Index,ID,Labels
2
+ n02119789,1,kit_fox
3
+ n02100735,2,English_setter
4
+ n02110185,3,Siberian_husky
5
+ n02096294,4,Australian_terrier
6
+ n02102040,5,English_springer
7
+ n02066245,6,grey_whale
8
+ n02509815,7,lesser_panda
9
+ n02124075,8,Egyptian_cat
10
+ n02417914,9,ibex
11
+ n02123394,10,Persian_cat
12
+ n02125311,11,cougar
13
+ n02423022,12,gazelle
14
+ n02346627,13,porcupine
15
+ n02077923,14,sea_lion
16
+ n02110063,15,malamute
17
+ n02447366,16,badger
18
+ n02109047,17,Great_Dane
19
+ n02089867,18,Walker_hound
20
+ n02102177,19,Welsh_springer_spaniel
21
+ n02091134,20,whippet
22
+ n02092002,21,Scottish_deerhound
23
+ n02071294,22,killer_whale
24
+ n02442845,23,mink
25
+ n02504458,24,African_elephant
26
+ n02092339,25,Weimaraner
27
+ n02098105,26,soft-coated_wheaten_terrier
28
+ n02096437,27,Dandie_Dinmont
29
+ n02114712,28,red_wolf
30
+ n02105641,29,Old_English_sheepdog
31
+ n02128925,30,jaguar
32
+ n02091635,31,otterhound
33
+ n02088466,32,bloodhound
34
+ n02096051,33,Airedale
35
+ n02117135,34,hyena
36
+ n02138441,35,meerkat
37
+ n02097130,36,giant_schnauzer
38
+ n02493509,37,titi
39
+ n02457408,38,three-toed_sloth
40
+ n02389026,39,sorrel
41
+ n02443484,40,black-footed_ferret
42
+ n02110341,41,dalmatian
43
+ n02089078,42,black-and-tan_coonhound
44
+ n02086910,43,papillon
45
+ n02445715,44,skunk
46
+ n02093256,45,Staffordshire_bullterrier
47
+ n02113978,46,Mexican_hairless
48
+ n02106382,47,Bouvier_des_Flandres
49
+ n02441942,48,weasel
50
+ n02113712,49,miniature_poodle
51
+ n02113186,50,Cardigan
52
+ n02105162,51,malinois
53
+ n02415577,52,bighorn
54
+ n02356798,53,fox_squirrel
55
+ n02488702,54,colobus
56
+ n02123159,55,tiger_cat
57
+ n02098413,56,Lhasa
58
+ n02422699,57,impala
59
+ n02114855,58,coyote
60
+ n02094433,59,Yorkshire_terrier
61
+ n02111277,60,Newfoundland
62
+ n02132136,61,brown_bear
63
+ n02119022,62,red_fox
64
+ n02091467,63,Norwegian_elkhound
65
+ n02106550,64,Rottweiler
66
+ n02422106,65,hartebeest
67
+ n02091831,66,Saluki
68
+ n02120505,67,grey_fox
69
+ n02104365,68,schipperke
70
+ n02086079,69,Pekinese
71
+ n02112706,70,Brabancon_griffon
72
+ n02098286,71,West_Highland_white_terrier
73
+ n02095889,72,Sealyham_terrier
74
+ n02484975,73,guenon
75
+ n02137549,74,mongoose
76
+ n02500267,75,indri
77
+ n02129604,76,tiger
78
+ n02090721,77,Irish_wolfhound
79
+ n02396427,78,wild_boar
80
+ n02108000,79,EntleBucher
81
+ n02391049,80,zebra
82
+ n02412080,81,ram
83
+ n02108915,82,French_bulldog
84
+ n02480495,83,orangutan
85
+ n02110806,84,basenji
86
+ n02128385,85,leopard
87
+ n02107683,86,Bernese_mountain_dog
88
+ n02085936,87,Maltese_dog
89
+ n02094114,88,Norfolk_terrier
90
+ n02087046,89,toy_terrier
91
+ n02100583,90,vizsla
92
+ n02096177,91,cairn
93
+ n02494079,92,squirrel_monkey
94
+ n02105056,93,groenendael
95
+ n02101556,94,clumber
96
+ n02123597,95,Siamese_cat
97
+ n02481823,96,chimpanzee
98
+ n02105505,97,komondor
99
+ n02088094,98,Afghan_hound
100
+ n02085782,99,Japanese_spaniel
101
+ n02489166,100,proboscis_monkey
102
+ n02364673,101,guinea_pig
103
+ n02114548,102,white_wolf
104
+ n02134084,103,ice_bear
105
+ n02480855,104,gorilla
106
+ n02090622,105,borzoi
107
+ n02113624,106,toy_poodle
108
+ n02093859,107,Kerry_blue_terrier
109
+ n02403003,108,ox
110
+ n02097298,109,Scotch_terrier
111
+ n02108551,110,Tibetan_mastiff
112
+ n02493793,111,spider_monkey
113
+ n02107142,112,Doberman
114
+ n02096585,113,Boston_bull
115
+ n02107574,114,Greater_Swiss_Mountain_dog
116
+ n02107908,115,Appenzeller
117
+ n02086240,116,Shih-Tzu
118
+ n02102973,117,Irish_water_spaniel
119
+ n02112018,118,Pomeranian
120
+ n02093647,119,Bedlington_terrier
121
+ n02397096,120,warthog
122
+ n02437312,121,Arabian_camel
123
+ n02483708,122,siamang
124
+ n02097047,123,miniature_schnauzer
125
+ n02106030,124,collie
126
+ n02099601,125,golden_retriever
127
+ n02093991,126,Irish_terrier
128
+ n02110627,127,affenpinscher
129
+ n02106166,128,Border_collie
130
+ n02326432,129,hare
131
+ n02108089,130,boxer
132
+ n02097658,131,silky_terrier
133
+ n02088364,132,beagle
134
+ n02111129,133,Leonberg
135
+ n02100236,134,German_short-haired_pointer
136
+ n02486261,135,patas
137
+ n02115913,136,dhole
138
+ n02486410,137,baboon
139
+ n02487347,138,macaque
140
+ n02099849,139,Chesapeake_Bay_retriever
141
+ n02108422,140,bull_mastiff
142
+ n02104029,141,kuvasz
143
+ n02492035,142,capuchin
144
+ n02110958,143,pug
145
+ n02099429,144,curly-coated_retriever
146
+ n02094258,145,Norwich_terrier
147
+ n02099267,146,flat-coated_retriever
148
+ n02395406,147,hog
149
+ n02112350,148,keeshond
150
+ n02109961,149,Eskimo_dog
151
+ n02101388,150,Brittany_spaniel
152
+ n02113799,151,standard_poodle
153
+ n02095570,152,Lakeland_terrier
154
+ n02128757,153,snow_leopard
155
+ n02101006,154,Gordon_setter
156
+ n02115641,155,dingo
157
+ n02097209,156,standard_schnauzer
158
+ n02342885,157,hamster
159
+ n02097474,158,Tibetan_terrier
160
+ n02120079,159,Arctic_fox
161
+ n02095314,160,wire-haired_fox_terrier
162
+ n02088238,161,basset
163
+ n02408429,162,water_buffalo
164
+ n02133161,163,American_black_bear
165
+ n02328150,164,Angora
166
+ n02410509,165,bison
167
+ n02492660,166,howler_monkey
168
+ n02398521,167,hippopotamus
169
+ n02112137,168,chow
170
+ n02510455,169,giant_panda
171
+ n02093428,170,American_Staffordshire_terrier
172
+ n02105855,171,Shetland_sheepdog
173
+ n02111500,172,Great_Pyrenees
174
+ n02085620,173,Chihuahua
175
+ n02123045,174,tabby
176
+ n02490219,175,marmoset
177
+ n02099712,176,Labrador_retriever
178
+ n02109525,177,Saint_Bernard
179
+ n02454379,178,armadillo
180
+ n02111889,179,Samoyed
181
+ n02088632,180,bluetick
182
+ n02090379,181,redbone
183
+ n02443114,182,polecat
184
+ n02361337,183,marmot
185
+ n02105412,184,kelpie
186
+ n02483362,185,gibbon
187
+ n02437616,186,llama
188
+ n02107312,187,miniature_pinscher
189
+ n02325366,188,wood_rabbit
190
+ n02091032,189,Italian_greyhound
191
+ n02129165,190,lion
192
+ n02102318,191,cocker_spaniel
193
+ n02100877,192,Irish_setter
194
+ n02074367,193,dugong
195
+ n02504013,194,Indian_elephant
196
+ n02363005,195,beaver
197
+ n02102480,196,Sussex_spaniel
198
+ n02113023,197,Pembroke
199
+ n02086646,198,Blenheim_spaniel
200
+ n02497673,199,Madagascar_cat
201
+ n02087394,200,Rhodesian_ridgeback
202
+ n02127052,201,lynx
203
+ n02116738,202,African_hunting_dog
204
+ n02488291,203,langur
205
+ n02091244,204,Ibizan_hound
206
+ n02114367,205,timber_wolf
207
+ n02130308,206,cheetah
208
+ n02089973,207,English_foxhound
209
+ n02105251,208,briard
210
+ n02134418,209,sloth_bear
211
+ n02093754,210,Border_terrier
212
+ n02106662,211,German_shepherd
213
+ n02444819,212,otter
214
+ n01882714,213,koala
215
+ n01871265,214,tusker
216
+ n01872401,215,echidna
217
+ n01877812,216,wallaby
218
+ n01873310,217,platypus
219
+ n01883070,218,wombat
220
+ n04086273,219,revolver
221
+ n04507155,220,umbrella
222
+ n04147183,221,schooner
223
+ n04254680,222,soccer_ball
224
+ n02672831,223,accordion
225
+ n02219486,224,ant
226
+ n02317335,225,starfish
227
+ n01968897,226,chambered_nautilus
228
+ n03452741,227,grand_piano
229
+ n03642806,228,laptop
230
+ n07745940,229,strawberry
231
+ n02690373,230,airliner
232
+ n04552348,231,warplane
233
+ n02692877,232,airship
234
+ n02782093,233,balloon
235
+ n04266014,234,space_shuttle
236
+ n03344393,235,fireboat
237
+ n03447447,236,gondola
238
+ n04273569,237,speedboat
239
+ n03662601,238,lifeboat
240
+ n02951358,239,canoe
241
+ n04612504,240,yawl
242
+ n02981792,241,catamaran
243
+ n04483307,242,trimaran
244
+ n03095699,243,container_ship
245
+ n03673027,244,liner
246
+ n03947888,245,pirate
247
+ n02687172,246,aircraft_carrier
248
+ n04347754,247,submarine
249
+ n04606251,248,wreck
250
+ n03478589,249,half_track
251
+ n04389033,250,tank
252
+ n03773504,251,missile
253
+ n02860847,252,bobsled
254
+ n03218198,253,dogsled
255
+ n02835271,254,bicycle-built-for-two
256
+ n03792782,255,mountain_bike
257
+ n03393912,256,freight_car
258
+ n03895866,257,passenger_car
259
+ n02797295,258,barrow
260
+ n04204347,259,shopping_cart
261
+ n03791053,260,motor_scooter
262
+ n03384352,261,forklift
263
+ n03272562,262,electric_locomotive
264
+ n04310018,263,steam_locomotive
265
+ n02704792,264,amphibian
266
+ n02701002,265,ambulance
267
+ n02814533,266,beach_wagon
268
+ n02930766,267,cab
269
+ n03100240,268,convertible
270
+ n03594945,269,jeep
271
+ n03670208,270,limousine
272
+ n03770679,271,minivan
273
+ n03777568,272,Model_T
274
+ n04037443,273,racer
275
+ n04285008,274,sports_car
276
+ n03444034,275,go-kart
277
+ n03445924,276,golfcart
278
+ n03785016,277,moped
279
+ n04252225,278,snowplow
280
+ n03345487,279,fire_engine
281
+ n03417042,280,garbage_truck
282
+ n03930630,281,pickup
283
+ n04461696,282,tow_truck
284
+ n04467665,283,trailer_truck
285
+ n03796401,284,moving_van
286
+ n03977966,285,police_van
287
+ n04065272,286,recreational_vehicle
288
+ n04335435,287,streetcar
289
+ n04252077,288,snowmobile
290
+ n04465501,289,tractor
291
+ n03776460,290,mobile_home
292
+ n04482393,291,tricycle
293
+ n04509417,292,unicycle
294
+ n03538406,293,horse_cart
295
+ n03599486,294,jinrikisha
296
+ n03868242,295,oxcart
297
+ n02804414,296,bassinet
298
+ n03125729,297,cradle
299
+ n03131574,298,crib
300
+ n03388549,299,four-poster
301
+ n02870880,300,bookcase
302
+ n03018349,301,china_cabinet
303
+ n03742115,302,medicine_chest
304
+ n03016953,303,chiffonier
305
+ n04380533,304,table_lamp
306
+ n03337140,305,file
307
+ n03891251,306,park_bench
308
+ n02791124,307,barber_chair
309
+ n04429376,308,throne
310
+ n03376595,309,folding_chair
311
+ n04099969,310,rocking_chair
312
+ n04344873,311,studio_couch
313
+ n04447861,312,toilet_seat
314
+ n03179701,313,desk
315
+ n03982430,314,pool_table
316
+ n03201208,315,dining_table
317
+ n03290653,316,entertainment_center
318
+ n04550184,317,wardrobe
319
+ n07742313,318,Granny_Smith
320
+ n07747607,319,orange
321
+ n07749582,320,lemon
322
+ n07753113,321,fig
323
+ n07753275,322,pineapple
324
+ n07753592,323,banana
325
+ n07754684,324,jackfruit
326
+ n07760859,325,custard_apple
327
+ n07768694,326,pomegranate
328
+ n12267677,327,acorn
329
+ n12620546,328,hip
330
+ n13133613,329,ear
331
+ n11879895,330,rapeseed
332
+ n12144580,331,corn
333
+ n12768682,332,buckeye
334
+ n03854065,333,organ
335
+ n04515003,334,upright
336
+ n03017168,335,chime
337
+ n03249569,336,drum
338
+ n03447721,337,gong
339
+ n03720891,338,maraca
340
+ n03721384,339,marimba
341
+ n04311174,340,steel_drum
342
+ n02787622,341,banjo
343
+ n02992211,342,cello
344
+ n04536866,343,violin
345
+ n03495258,344,harp
346
+ n02676566,345,acoustic_guitar
347
+ n03272010,346,electric_guitar
348
+ n03110669,347,cornet
349
+ n03394916,348,French_horn
350
+ n04487394,349,trombone
351
+ n03494278,350,harmonica
352
+ n03840681,351,ocarina
353
+ n03884397,352,panpipe
354
+ n02804610,353,bassoon
355
+ n03838899,354,oboe
356
+ n04141076,355,sax
357
+ n03372029,356,flute
358
+ n11939491,357,daisy
359
+ n12057211,358,yellow_lady's_slipper
360
+ n09246464,359,cliff
361
+ n09468604,360,valley
362
+ n09193705,361,alp
363
+ n09472597,362,volcano
364
+ n09399592,363,promontory
365
+ n09421951,364,sandbar
366
+ n09256479,365,coral_reef
367
+ n09332890,366,lakeside
368
+ n09428293,367,seashore
369
+ n09288635,368,geyser
370
+ n03498962,369,hatchet
371
+ n03041632,370,cleaver
372
+ n03658185,371,letter_opener
373
+ n03954731,372,plane
374
+ n03995372,373,power_drill
375
+ n03649909,374,lawn_mower
376
+ n03481172,375,hammer
377
+ n03109150,376,corkscrew
378
+ n02951585,377,can_opener
379
+ n03970156,378,plunger
380
+ n04154565,379,screwdriver
381
+ n04208210,380,shovel
382
+ n03967562,381,plow
383
+ n03000684,382,chain_saw
384
+ n01514668,383,cock
385
+ n01514859,384,hen
386
+ n01518878,385,ostrich
387
+ n01530575,386,brambling
388
+ n01531178,387,goldfinch
389
+ n01532829,388,house_finch
390
+ n01534433,389,junco
391
+ n01537544,390,indigo_bunting
392
+ n01558993,391,robin
393
+ n01560419,392,bulbul
394
+ n01580077,393,jay
395
+ n01582220,394,magpie
396
+ n01592084,395,chickadee
397
+ n01601694,396,water_ouzel
398
+ n01608432,397,kite
399
+ n01614925,398,bald_eagle
400
+ n01616318,399,vulture
401
+ n01622779,400,great_grey_owl
402
+ n01795545,401,black_grouse
403
+ n01796340,402,ptarmigan
404
+ n01797886,403,ruffed_grouse
405
+ n01798484,404,prairie_chicken
406
+ n01806143,405,peacock
407
+ n01806567,406,quail
408
+ n01807496,407,partridge
409
+ n01817953,408,African_grey
410
+ n01818515,409,macaw
411
+ n01819313,410,sulphur-crested_cockatoo
412
+ n01820546,411,lorikeet
413
+ n01824575,412,coucal
414
+ n01828970,413,bee_eater
415
+ n01829413,414,hornbill
416
+ n01833805,415,hummingbird
417
+ n01843065,416,jacamar
418
+ n01843383,417,toucan
419
+ n01847000,418,drake
420
+ n01855032,419,red-breasted_merganser
421
+ n01855672,420,goose
422
+ n01860187,421,black_swan
423
+ n02002556,422,white_stork
424
+ n02002724,423,black_stork
425
+ n02006656,424,spoonbill
426
+ n02007558,425,flamingo
427
+ n02009912,426,American_egret
428
+ n02009229,427,little_blue_heron
429
+ n02011460,428,bittern
430
+ n02012849,429,crane
431
+ n02013706,430,limpkin
432
+ n02018207,431,American_coot
433
+ n02018795,432,bustard
434
+ n02025239,433,ruddy_turnstone
435
+ n02027492,434,red-backed_sandpiper
436
+ n02028035,435,redshank
437
+ n02033041,436,dowitcher
438
+ n02037110,437,oystercatcher
439
+ n02017213,438,European_gallinule
440
+ n02051845,439,pelican
441
+ n02056570,440,king_penguin
442
+ n02058221,441,albatross
443
+ n01484850,442,great_white_shark
444
+ n01491361,443,tiger_shark
445
+ n01494475,444,hammerhead
446
+ n01496331,445,electric_ray
447
+ n01498041,446,stingray
448
+ n02514041,447,barracouta
449
+ n02536864,448,coho
450
+ n01440764,449,tench
451
+ n01443537,450,goldfish
452
+ n02526121,451,eel
453
+ n02606052,452,rock_beauty
454
+ n02607072,453,anemone_fish
455
+ n02643566,454,lionfish
456
+ n02655020,455,puffer
457
+ n02640242,456,sturgeon
458
+ n02641379,457,gar
459
+ n01664065,458,loggerhead
460
+ n01665541,459,leatherback_turtle
461
+ n01667114,460,mud_turtle
462
+ n01667778,461,terrapin
463
+ n01669191,462,box_turtle
464
+ n01675722,463,banded_gecko
465
+ n01677366,464,common_iguana
466
+ n01682714,465,American_chameleon
467
+ n01685808,466,whiptail
468
+ n01687978,467,agama
469
+ n01688243,468,frilled_lizard
470
+ n01689811,469,alligator_lizard
471
+ n01692333,470,Gila_monster
472
+ n01693334,471,green_lizard
473
+ n01694178,472,African_chameleon
474
+ n01695060,473,Komodo_dragon
475
+ n01704323,474,triceratops
476
+ n01697457,475,African_crocodile
477
+ n01698640,476,American_alligator
478
+ n01728572,477,thunder_snake
479
+ n01728920,478,ringneck_snake
480
+ n01729322,479,hognose_snake
481
+ n01729977,480,green_snake
482
+ n01734418,481,king_snake
483
+ n01735189,482,garter_snake
484
+ n01737021,483,water_snake
485
+ n01739381,484,vine_snake
486
+ n01740131,485,night_snake
487
+ n01742172,486,boa_constrictor
488
+ n01744401,487,rock_python
489
+ n01748264,488,Indian_cobra
490
+ n01749939,489,green_mamba
491
+ n01751748,490,sea_snake
492
+ n01753488,491,horned_viper
493
+ n01755581,492,diamondback
494
+ n01756291,493,sidewinder
495
+ n01629819,494,European_fire_salamander
496
+ n01630670,495,common_newt
497
+ n01631663,496,eft
498
+ n01632458,497,spotted_salamander
499
+ n01632777,498,axolotl
500
+ n01641577,499,bullfrog
501
+ n01644373,500,tree_frog
502
+ n01644900,501,tailed_frog
503
+ n04579432,502,whistle
504
+ n04592741,503,wing
505
+ n03876231,504,paintbrush
506
+ n03483316,505,hand_blower
507
+ n03868863,506,oxygen_mask
508
+ n04251144,507,snorkel
509
+ n03691459,508,loudspeaker
510
+ n03759954,509,microphone
511
+ n04152593,510,screen
512
+ n03793489,511,mouse
513
+ n03271574,512,electric_fan
514
+ n03843555,513,oil_filter
515
+ n04332243,514,strainer
516
+ n04265275,515,space_heater
517
+ n04330267,516,stove
518
+ n03467068,517,guillotine
519
+ n02794156,518,barometer
520
+ n04118776,519,rule
521
+ n03841143,520,odometer
522
+ n04141975,521,scale
523
+ n02708093,522,analog_clock
524
+ n03196217,523,digital_clock
525
+ n04548280,524,wall_clock
526
+ n03544143,525,hourglass
527
+ n04355338,526,sundial
528
+ n03891332,527,parking_meter
529
+ n04328186,528,stopwatch
530
+ n03197337,529,digital_watch
531
+ n04317175,530,stethoscope
532
+ n04376876,531,syringe
533
+ n03706229,532,magnetic_compass
534
+ n02841315,533,binoculars
535
+ n04009552,534,projector
536
+ n04356056,535,sunglasses
537
+ n03692522,536,loupe
538
+ n04044716,537,radio_telescope
539
+ n02879718,538,bow
540
+ n02950826,539,cannon
541
+ n02749479,540,assault_rifle
542
+ n04090263,541,rifle
543
+ n04008634,542,projectile
544
+ n03085013,543,computer_keyboard
545
+ n04505470,544,typewriter_keyboard
546
+ n03126707,545,crane
547
+ n03666591,546,lighter
548
+ n02666196,547,abacus
549
+ n02977058,548,cash_machine
550
+ n04238763,549,slide_rule
551
+ n03180011,550,desktop_computer
552
+ n03485407,551,hand-held_computer
553
+ n03832673,552,notebook
554
+ n06359193,553,web_site
555
+ n03496892,554,harvester
556
+ n04428191,555,thresher
557
+ n04004767,556,printer
558
+ n04243546,557,slot
559
+ n04525305,558,vending_machine
560
+ n04179913,559,sewing_machine
561
+ n03602883,560,joystick
562
+ n04372370,561,switch
563
+ n03532672,562,hook
564
+ n02974003,563,car_wheel
565
+ n03874293,564,paddlewheel
566
+ n03944341,565,pinwheel
567
+ n03992509,566,potter's_wheel
568
+ n03425413,567,gas_pump
569
+ n02966193,568,carousel
570
+ n04371774,569,swing
571
+ n04067472,570,reel
572
+ n04040759,571,radiator
573
+ n04019541,572,puck
574
+ n03492542,573,hard_disc
575
+ n04355933,574,sunglass
576
+ n03929660,575,pick
577
+ n02965783,576,car_mirror
578
+ n04258138,577,solar_dish
579
+ n04074963,578,remote_control
580
+ n03208938,579,disk_brake
581
+ n02910353,580,buckle
582
+ n03476684,581,hair_slide
583
+ n03627232,582,knot
584
+ n03075370,583,combination_lock
585
+ n03874599,584,padlock
586
+ n03804744,585,nail
587
+ n04127249,586,safety_pin
588
+ n04153751,587,screw
589
+ n03803284,588,muzzle
590
+ n04162706,589,seat_belt
591
+ n04228054,590,ski
592
+ n02948072,591,candle
593
+ n03590841,592,jack-o'-lantern
594
+ n04286575,593,spotlight
595
+ n04456115,594,torch
596
+ n03814639,595,neck_brace
597
+ n03933933,596,pier
598
+ n04485082,597,tripod
599
+ n03733131,598,maypole
600
+ n03794056,599,mousetrap
601
+ n04275548,600,spider_web
602
+ n01768244,601,trilobite
603
+ n01770081,602,harvestman
604
+ n01770393,603,scorpion
605
+ n01773157,604,black_and_gold_garden_spider
606
+ n01773549,605,barn_spider
607
+ n01773797,606,garden_spider
608
+ n01774384,607,black_widow
609
+ n01774750,608,tarantula
610
+ n01775062,609,wolf_spider
611
+ n01776313,610,tick
612
+ n01784675,611,centipede
613
+ n01990800,612,isopod
614
+ n01978287,613,Dungeness_crab
615
+ n01978455,614,rock_crab
616
+ n01980166,615,fiddler_crab
617
+ n01981276,616,king_crab
618
+ n01983481,617,American_lobster
619
+ n01984695,618,spiny_lobster
620
+ n01985128,619,crayfish
621
+ n01986214,620,hermit_crab
622
+ n02165105,621,tiger_beetle
623
+ n02165456,622,ladybug
624
+ n02167151,623,ground_beetle
625
+ n02168699,624,long-horned_beetle
626
+ n02169497,625,leaf_beetle
627
+ n02172182,626,dung_beetle
628
+ n02174001,627,rhinoceros_beetle
629
+ n02177972,628,weevil
630
+ n02190166,629,fly
631
+ n02206856,630,bee
632
+ n02226429,631,grasshopper
633
+ n02229544,632,cricket
634
+ n02231487,633,walking_stick
635
+ n02233338,634,cockroach
636
+ n02236044,635,mantis
637
+ n02256656,636,cicada
638
+ n02259212,637,leafhopper
639
+ n02264363,638,lacewing
640
+ n02268443,639,dragonfly
641
+ n02268853,640,damselfly
642
+ n02276258,641,admiral
643
+ n02277742,642,ringlet
644
+ n02279972,643,monarch
645
+ n02280649,644,cabbage_butterfly
646
+ n02281406,645,sulphur_butterfly
647
+ n02281787,646,lycaenid
648
+ n01910747,647,jellyfish
649
+ n01914609,648,sea_anemone
650
+ n01917289,649,brain_coral
651
+ n01924916,650,flatworm
652
+ n01930112,651,nematode
653
+ n01943899,652,conch
654
+ n01944390,653,snail
655
+ n01945685,654,slug
656
+ n01950731,655,sea_slug
657
+ n01955084,656,chiton
658
+ n02319095,657,sea_urchin
659
+ n02321529,658,sea_cucumber
660
+ n03584829,659,iron
661
+ n03297495,660,espresso_maker
662
+ n03761084,661,microwave
663
+ n03259280,662,Dutch_oven
664
+ n04111531,663,rotisserie
665
+ n04442312,664,toaster
666
+ n04542943,665,waffle_iron
667
+ n04517823,666,vacuum
668
+ n03207941,667,dishwasher
669
+ n04070727,668,refrigerator
670
+ n04554684,669,washer
671
+ n03133878,670,Crock_Pot
672
+ n03400231,671,frying_pan
673
+ n04596742,672,wok
674
+ n02939185,673,caldron
675
+ n03063689,674,coffeepot
676
+ n04398044,675,teapot
677
+ n04270147,676,spatula
678
+ n02699494,677,altar
679
+ n04486054,678,triumphal_arch
680
+ n03899768,679,patio
681
+ n04311004,680,steel_arch_bridge
682
+ n04366367,681,suspension_bridge
683
+ n04532670,682,viaduct
684
+ n02793495,683,barn
685
+ n03457902,684,greenhouse
686
+ n03877845,685,palace
687
+ n03781244,686,monastery
688
+ n03661043,687,library
689
+ n02727426,688,apiary
690
+ n02859443,689,boathouse
691
+ n03028079,690,church
692
+ n03788195,691,mosque
693
+ n04346328,692,stupa
694
+ n03956157,693,planetarium
695
+ n04081281,694,restaurant
696
+ n03032252,695,cinema
697
+ n03529860,696,home_theater
698
+ n03697007,697,lumbermill
699
+ n03065424,698,coil
700
+ n03837869,699,obelisk
701
+ n04458633,700,totem_pole
702
+ n02980441,701,castle
703
+ n04005630,702,prison
704
+ n03461385,703,grocery_store
705
+ n02776631,704,bakery
706
+ n02791270,705,barbershop
707
+ n02871525,706,bookshop
708
+ n02927161,707,butcher_shop
709
+ n03089624,708,confectionery
710
+ n04200800,709,shoe_shop
711
+ n04443257,710,tobacco_shop
712
+ n04462240,711,toyshop
713
+ n03388043,712,fountain
714
+ n03042490,713,cliff_dwelling
715
+ n04613696,714,yurt
716
+ n03216828,715,dock
717
+ n02892201,716,brass
718
+ n03743016,717,megalith
719
+ n02788148,718,bannister
720
+ n02894605,719,breakwater
721
+ n03160309,720,dam
722
+ n03000134,721,chainlink_fence
723
+ n03930313,722,picket_fence
724
+ n04604644,723,worm_fence
725
+ n04326547,724,stone_wall
726
+ n03459775,725,grille
727
+ n04239074,726,sliding_door
728
+ n04501370,727,turnstile
729
+ n03792972,728,mountain_tent
730
+ n04149813,729,scoreboard
731
+ n03530642,730,honeycomb
732
+ n03961711,731,plate_rack
733
+ n03903868,732,pedestal
734
+ n02814860,733,beacon
735
+ n07711569,734,mashed_potato
736
+ n07720875,735,bell_pepper
737
+ n07714571,736,head_cabbage
738
+ n07714990,737,broccoli
739
+ n07715103,738,cauliflower
740
+ n07716358,739,zucchini
741
+ n07716906,740,spaghetti_squash
742
+ n07717410,741,acorn_squash
743
+ n07717556,742,butternut_squash
744
+ n07718472,743,cucumber
745
+ n07718747,744,artichoke
746
+ n07730033,745,cardoon
747
+ n07734744,746,mushroom
748
+ n04209239,747,shower_curtain
749
+ n03594734,748,jean
750
+ n02971356,749,carton
751
+ n03485794,750,handkerchief
752
+ n04133789,751,sandal
753
+ n02747177,752,ashcan
754
+ n04125021,753,safe
755
+ n07579787,754,plate
756
+ n03814906,755,necklace
757
+ n03134739,756,croquet_ball
758
+ n03404251,757,fur_coat
759
+ n04423845,758,thimble
760
+ n03877472,759,pajama
761
+ n04120489,760,running_shoe
762
+ n03062245,761,cocktail_shaker
763
+ n03014705,762,chest
764
+ n03717622,763,manhole_cover
765
+ n03777754,764,modem
766
+ n04493381,765,tub
767
+ n04476259,766,tray
768
+ n02777292,767,balance_beam
769
+ n07693725,768,bagel
770
+ n03998194,769,prayer_rug
771
+ n03617480,770,kimono
772
+ n07590611,771,hot_pot
773
+ n04579145,772,whiskey_jug
774
+ n03623198,773,knee_pad
775
+ n07248320,774,book_jacket
776
+ n04277352,775,spindle
777
+ n04229816,776,ski_mask
778
+ n02823428,777,beer_bottle
779
+ n03127747,778,crash_helmet
780
+ n02877765,779,bottlecap
781
+ n04435653,780,tile_roof
782
+ n03724870,781,mask
783
+ n03710637,782,maillot
784
+ n03920288,783,Petri_dish
785
+ n03379051,784,football_helmet
786
+ n02807133,785,bathing_cap
787
+ n04399382,786,teddy
788
+ n03527444,787,holster
789
+ n03983396,788,pop_bottle
790
+ n03924679,789,photocopier
791
+ n04532106,790,vestment
792
+ n06785654,791,crossword_puzzle
793
+ n03445777,792,golf_ball
794
+ n07613480,793,trifle
795
+ n04350905,794,suit
796
+ n04562935,795,water_tower
797
+ n03325584,796,feather_boa
798
+ n03045698,797,cloak
799
+ n07892512,798,red_wine
800
+ n03250847,799,drumstick
801
+ n04192698,800,shield
802
+ n03026506,801,Christmas_stocking
803
+ n03534580,802,hoopskirt
804
+ n07565083,803,menu
805
+ n04296562,804,stage
806
+ n02869837,805,bonnet
807
+ n07871810,806,meat_loaf
808
+ n02799071,807,baseball
809
+ n03314780,808,face_powder
810
+ n04141327,809,scabbard
811
+ n04357314,810,sunscreen
812
+ n02823750,811,beer_glass
813
+ n13052670,812,hen-of-the-woods
814
+ n07583066,813,guacamole
815
+ n03637318,814,lampshade
816
+ n04599235,815,wool
817
+ n07802026,816,hay
818
+ n02883205,817,bow_tie
819
+ n03709823,818,mailbag
820
+ n04560804,819,water_jug
821
+ n02909870,820,bucket
822
+ n03207743,821,dishrag
823
+ n04263257,822,soup_bowl
824
+ n07932039,823,eggnog
825
+ n03786901,824,mortar
826
+ n04479046,825,trench_coat
827
+ n03873416,826,paddle
828
+ n02999410,827,chain
829
+ n04367480,828,swab
830
+ n03775546,829,mixing_bowl
831
+ n07875152,830,potpie
832
+ n04591713,831,wine_bottle
833
+ n04201297,832,shoji
834
+ n02916936,833,bulletproof_vest
835
+ n03240683,834,drilling_platform
836
+ n02840245,835,binder
837
+ n02963159,836,cardigan
838
+ n04370456,837,sweatshirt
839
+ n03991062,838,pot
840
+ n02843684,839,birdhouse
841
+ n03482405,840,hamper
842
+ n03942813,841,ping-pong_ball
843
+ n03908618,842,pencil_box
844
+ n03902125,843,pay-phone
845
+ n07584110,844,consomme
846
+ n02730930,845,apron
847
+ n04023962,846,punching_bag
848
+ n02769748,847,backpack
849
+ n10148035,848,groom
850
+ n02817516,849,bearskin
851
+ n03908714,850,pencil_sharpener
852
+ n02906734,851,broom
853
+ n03788365,852,mosquito_net
854
+ n02667093,853,abaya
855
+ n03787032,854,mortarboard
856
+ n03980874,855,poncho
857
+ n03141823,856,crutch
858
+ n03976467,857,Polaroid_camera
859
+ n04264628,858,space_bar
860
+ n07930864,859,cup
861
+ n04039381,860,racket
862
+ n06874185,861,traffic_light
863
+ n04033901,862,quill
864
+ n04041544,863,radio
865
+ n07860988,864,dough
866
+ n03146219,865,cuirass
867
+ n03763968,866,military_uniform
868
+ n03676483,867,lipstick
869
+ n04209133,868,shower_cap
870
+ n03782006,869,monitor
871
+ n03857828,870,oscilloscope
872
+ n03775071,871,mitten
873
+ n02892767,872,brassiere
874
+ n07684084,873,French_loaf
875
+ n04522168,874,vase
876
+ n03764736,875,milk_can
877
+ n04118538,876,rugby_ball
878
+ n03887697,877,paper_towel
879
+ n13044778,878,earthstar
880
+ n03291819,879,envelope
881
+ n03770439,880,miniskirt
882
+ n03124170,881,cowboy_hat
883
+ n04487081,882,trolleybus
884
+ n03916031,883,perfume
885
+ n02808440,884,bathtub
886
+ n07697537,885,hotdog
887
+ n12985857,886,coral_fungus
888
+ n02917067,887,bullet_train
889
+ n03938244,888,pillow
890
+ n15075141,889,toilet_tissue
891
+ n02978881,890,cassette
892
+ n02966687,891,carpenter's_kit
893
+ n03633091,892,ladle
894
+ n13040303,893,stinkhorn
895
+ n03690938,894,lotion
896
+ n03476991,895,hair_spray
897
+ n02669723,896,academic_gown
898
+ n03220513,897,dome
899
+ n03127925,898,crate
900
+ n04584207,899,wig
901
+ n07880968,900,burrito
902
+ n03937543,901,pill_bottle
903
+ n03000247,902,chain_mail
904
+ n04418357,903,theater_curtain
905
+ n04590129,904,window_shade
906
+ n02795169,905,barrel
907
+ n04553703,906,washbasin
908
+ n02783161,907,ballpoint
909
+ n02802426,908,basketball
910
+ n02808304,909,bath_towel
911
+ n03124043,910,cowboy_boot
912
+ n03450230,911,gown
913
+ n04589890,912,window_screen
914
+ n12998815,913,agaric
915
+ n02992529,914,cellular_telephone
916
+ n03825788,915,nipple
917
+ n02790996,916,barbell
918
+ n03710193,917,mailbox
919
+ n03630383,918,lab_coat
920
+ n03347037,919,fire_screen
921
+ n03769881,920,minibus
922
+ n03871628,921,packet
923
+ n03733281,922,maze
924
+ n03976657,923,pole
925
+ n03535780,924,horizontal_bar
926
+ n04259630,925,sombrero
927
+ n03929855,926,pickelhaube
928
+ n04049303,927,rain_barrel
929
+ n04548362,928,wallet
930
+ n02979186,929,cassette_player
931
+ n06596364,930,comic_book
932
+ n03935335,931,piggy_bank
933
+ n06794110,932,street_sign
934
+ n02825657,933,bell_cote
935
+ n03388183,934,fountain_pen
936
+ n04591157,935,Windsor_tie
937
+ n04540053,936,volleyball
938
+ n03866082,937,overskirt
939
+ n04136333,938,sarong
940
+ n04026417,939,purse
941
+ n02865351,940,bolo_tie
942
+ n02834397,941,bib
943
+ n03888257,942,parachute
944
+ n04235860,943,sleeping_bag
945
+ n04404412,944,television
946
+ n04371430,945,swimming_trunks
947
+ n03733805,946,measuring_cup
948
+ n07920052,947,espresso
949
+ n07873807,948,pizza
950
+ n02895154,949,breastplate
951
+ n04204238,950,shopping_basket
952
+ n04597913,951,wooden_spoon
953
+ n04131690,952,saltshaker
954
+ n07836838,953,chocolate_sauce
955
+ n09835506,954,ballplayer
956
+ n03443371,955,goblet
957
+ n13037406,956,gyromitra
958
+ n04336792,957,stretcher
959
+ n04557648,958,water_bottle
960
+ n03187595,959,dial_telephone
961
+ n04254120,960,soap_dispenser
962
+ n03595614,961,jersey
963
+ n04146614,962,school_bus
964
+ n03598930,963,jigsaw_puzzle
965
+ n03958227,964,plastic_bag
966
+ n04069434,965,reflex_camera
967
+ n03188531,966,diaper
968
+ n02786058,967,Band_Aid
969
+ n07615774,968,ice_lolly
970
+ n04525038,969,velvet
971
+ n04409515,970,tennis_ball
972
+ n03424325,971,gasmask
973
+ n03223299,972,doormat
974
+ n03680355,973,Loafer
975
+ n07614500,974,ice_cream
976
+ n07695742,975,pretzel
977
+ n04033995,976,quilt
978
+ n03710721,977,maillot
979
+ n04392985,978,tape_player
980
+ n03047690,979,clog
981
+ n03584254,980,iPod
982
+ n13054560,981,bolete
983
+ n10565667,982,scuba_diver
984
+ n03950228,983,pitcher
985
+ n03729826,984,matchstick
986
+ n02837789,985,bikini
987
+ n04254777,986,sock
988
+ n02988304,987,CD_player
989
+ n03657121,988,lens_cap
990
+ n04417672,989,thatch
991
+ n04523525,990,vault
992
+ n02815834,991,beaker
993
+ n09229709,992,bubble
994
+ n07697313,993,cheeseburger
995
+ n03888605,994,parallel_bars
996
+ n03355925,995,flagpole
997
+ n03063599,996,coffee_mug
998
+ n04116512,997,rubber_eraser
999
+ n04325704,998,stole
1000
+ n07831146,999,carbonara
1001
+ n03255030,1000,dumbbell
lightning_imagenet_classification.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ ### config
5
+
6
+ total_epochs = 100
7
+ batch_size = 256
8
+ num_processes = 2
9
+ image_size = 224
10
+ drop_path = 0.05
11
+ ## Loss Function - CE (but try BCE)
12
+ # Always choose "SGD" for CNNs and AdamW for ViTs - SGD is Difficult to Converge || We should use LAMB with Cosine LR
13
+ ## Multi-label --> Mixup and CutMix
14
+ LR = 5e-3
15
+ weight_decay = 0.05
16
+ warmup_epoch = 5
17
+ dropout = 0
18
+ drop_path = 0.05
19
+
20
+
21
+ # In[5]:
22
+
23
+
24
+ import wandb
25
+
26
+ wandb_token = "e653df8526c77d083379de033d13342620583fdf"
27
+
28
+ wandb.login(key=wandb_token)
29
+
30
+
31
+ # In[7]:
32
+
33
+
34
+ import torch
35
+ import torch.nn as nn
36
+ from PIL import Image
37
+ import numpy as np
38
+ import pandas as pd
39
+
40
+
41
+ import albumentations
42
+
43
+ train_aug = albumentations.Compose(
44
+ [
45
+ albumentations.Resize(image_size, image_size, p=1),
46
+ albumentations.ShiftScaleRotate(
47
+ shift_limit=0.0625, scale_limit=0.1, rotate_limit=10, p=0.8
48
+ ),
49
+ albumentations.OneOf(
50
+ [
51
+ albumentations.RandomGamma(gamma_limit=(90, 110)),
52
+ albumentations.RandomBrightnessContrast(
53
+ brightness_limit=0.1, contrast_limit=0.1
54
+ ),
55
+ ],
56
+ p=0.5,
57
+ ),
58
+ albumentations.HorizontalFlip(),
59
+ albumentations.Normalize(
60
+ mean=[0.485, 0.456, 0.406],
61
+ std=[0.229, 0.224, 0.225],
62
+ max_pixel_value=255.0,
63
+ p=1.0,
64
+ ),
65
+ ],
66
+ p=1.0,
67
+ )
68
+
69
+ valid_aug = albumentations.Compose(
70
+ [
71
+ albumentations.Resize(image_size, image_size, p=1),
72
+ albumentations.Normalize(
73
+ mean=[0.485, 0.456, 0.406],
74
+ std=[0.229, 0.224, 0.225],
75
+ max_pixel_value=255.0,
76
+ p=1.0,
77
+ ),
78
+ ],
79
+ p=1.0,
80
+ )
81
+
82
+
83
+ class ImageNetDataset(torch.utils.data.Dataset):
84
+ def __init__(self, image_path, augmentations=None, train=True):
85
+ self.image_path = image_path
86
+ self.augmentations = augmentations
87
+ self.df = pd.read_csv(
88
+ "/home/ubuntu/training/training/imagenet_class_labels.csv"
89
+ )
90
+ self.valid_df = pd.read_csv(
91
+ "/home/ubuntu/training/training/validation_classes.csv"
92
+ )
93
+ self.train = train
94
+
95
+ def __len__(self):
96
+ return len(self.image_path)
97
+
98
+ def __getitem__(self, item):
99
+ image_path = self.image_path[item]
100
+ with Image.open(image_path) as img:
101
+ image = img.convert("RGB")
102
+ image = np.asarray(image)
103
+
104
+ ## center crop 95% area
105
+ H, W, C = image.shape
106
+ image = image[int(0.04 * H) : int(0.96 * H), int(0.04 * W) : int(0.96 * W), :]
107
+
108
+ if self.train:
109
+ class_id = str(self.image_path[item].split("/")[-2])
110
+ targets = self.df[self.df["Index"] == class_id]["ID"].values[0] - 1
111
+ else:
112
+ class_id = str(self.image_path[item].split("/")[-1][:-5])
113
+ targets = (
114
+ self.valid_df[self.valid_df["ImageId"] == class_id]["LabelId"].values[0]
115
+ - 1
116
+ )
117
+
118
+ if self.augmentations is not None:
119
+ augmented = self.augmentations(image=image)
120
+ image = augmented["image"]
121
+
122
+ image = np.transpose(image, (2, 0, 1)).astype(np.float32)
123
+
124
+ return {
125
+ "image": torch.tensor(image, dtype=torch.float),
126
+ "targets": torch.tensor(targets, dtype=torch.long),
127
+ }
128
+
129
+
130
+ from timm.data.mixup import Mixup
131
+
132
+ mixup_args = {
133
+ "mixup_alpha": 0.1,
134
+ "cutmix_alpha": 1.0,
135
+ "cutmix_minmax": None,
136
+ "prob": 0.7,
137
+ "switch_prob": 0,
138
+ "mode": "batch",
139
+ "label_smoothing": 0.1,
140
+ "num_classes": 1000,
141
+ }
142
+ mixup_fn = Mixup(**mixup_args)
143
+
144
+
145
+ import glob
146
+ import random
147
+
148
+ train_paths = glob.glob(
149
+ "/home/ubuntu/training/Imagenet/ILSVRC/Data/ImageNet/train/*/*.JPEG"
150
+ )
151
+ valid_paths = glob.glob(
152
+ "/home/ubuntu/training/Imagenet/ILSVRC/Data/ImageNet/val/*.JPEG"
153
+ )
154
+
155
+
156
+ import pytorch_lightning as pl
157
+ from pytorch_lightning.loggers import WandbLogger
158
+
159
+
160
+ import torch
161
+ from timm import create_model
162
+ from torchvision import transforms, datasets
163
+ import pytorch_lightning as L
164
+
165
+ # from timm.scheduler.cosine_lr import CosineLRScheduler
166
+
167
+
168
+ class LitClassification(L.LightningModule):
169
+ def __init__(self):
170
+ super().__init__()
171
+ self.model = create_model(
172
+ "resnet50", pretrained=False, drop_path_rate=drop_path
173
+ )
174
+ # model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
175
+
176
+ self.loss_fn = torch.nn.CrossEntropyLoss()
177
+
178
+ def forward(self, x):
179
+ return self.model(x)
180
+
181
+ def training_step(self, batch):
182
+ images, targets = batch["image"], batch["targets"]
183
+ outputs = self.model(images)
184
+ loss = self.loss_fn(outputs, targets)
185
+ acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
186
+ self.log("train_loss", loss)
187
+ self.log(
188
+ "train_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True
189
+ )
190
+ self.log("train_acc5", acc5, on_step=True, on_epoch=True, logger=True)
191
+ return loss
192
+
193
+ def validation_step(self, batch):
194
+ images, targets = batch["image"], batch["targets"]
195
+ outputs = self(images)
196
+ loss = self.loss_fn(outputs, targets)
197
+
198
+ acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
199
+ self.log("valid_loss", loss)
200
+ self.log("val_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True)
201
+ self.log("val_acc5", acc5, on_step=True, on_epoch=True)
202
+
203
+ @staticmethod
204
+ def __accuracy(output, target, topk=(1,)):
205
+ """Computes the accuracy over the k top predictions for the specified values of k."""
206
+ with torch.no_grad():
207
+ maxk = max(topk)
208
+ batch_size = target.size(0)
209
+
210
+ _, pred = output.topk(maxk, 1, True, True)
211
+ pred = pred.t()
212
+ correct = pred.eq(target.view(1, -1).expand_as(pred))
213
+
214
+ res = []
215
+ for k in topk:
216
+ correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
217
+ res.append(correct_k.mul_(100.0 / batch_size))
218
+ return res
219
+
220
+ def configure_optimizers(self):
221
+ optimizer = torch.optim.AdamW(
222
+ self.parameters(), lr=LR, weight_decay=weight_decay
223
+ )
224
+
225
+ scheduler = torch.optim.lr_scheduler.OneCycleLR(
226
+ optimizer,
227
+ max_lr=LR,
228
+ total_steps=self.trainer.estimated_stepping_batches,
229
+ epochs=warmup_epoch,
230
+ steps_per_epoch=None,
231
+ pct_start=0.3,
232
+ anneal_strategy="cos",
233
+ cycle_momentum=True,
234
+ base_momentum=0.85,
235
+ max_momentum=0.95,
236
+ div_factor=25.0,
237
+ final_div_factor=10000.0,
238
+ three_phase=False,
239
+ last_epoch=-1,
240
+ verbose="deprecated",
241
+ )
242
+ return [optimizer], [scheduler]
243
+
244
+ def train_dataloader(self):
245
+ train_dataset = ImageNetDataset(train_paths, train_aug, train=True)
246
+ train_loader = torch.utils.data.DataLoader(
247
+ train_dataset,
248
+ batch_size=batch_size,
249
+ shuffle=True,
250
+ num_workers=num_processes,
251
+ pin_memory=True,
252
+ )
253
+ return train_loader
254
+
255
+ def val_dataloader(self):
256
+ valid_dataset = ImageNetDataset(valid_paths, valid_aug, train=False)
257
+ valid_loader = torch.utils.data.DataLoader(
258
+ valid_dataset,
259
+ batch_size=batch_size,
260
+ shuffle=False,
261
+ )
262
+ return valid_loader
263
+
264
+
265
+ L.seed_everything(879246)
266
+
267
+
268
+ wandb_logger = WandbLogger(log_model="all", project="ImageNet_Lightning")
269
+
270
+
271
+ # Initialize a trainer
272
+ best_checkpoint_callback = L.callbacks.ModelCheckpoint(
273
+ filename="bestmodel-{epoch}-monitor-{val_acc1}", mode="max"
274
+ )
275
+ every_epoch_checkpoint_callback = L.callbacks.ModelCheckpoint(
276
+ filename="{epoch}_{val_acc1}", every_n_epochs=10
277
+ )
278
+
279
+ trainer = L.Trainer(
280
+ max_epochs=total_epochs,
281
+ devices=torch.cuda.device_count(),
282
+ accelerator="gpu",
283
+ logger=wandb_logger,
284
+ # callbacks=[early_stop_callback],
285
+ precision=16,
286
+ callbacks=[best_checkpoint_callback, every_epoch_checkpoint_callback],
287
+ )
288
+
289
+ model = LitClassification()
290
+
291
+ trainer.fit(
292
+ model,
293
+ ckpt_path="/home/ubuntu/training/training/ImageNet_Lightning/h94dnl2b/checkpoints/bestmodel-epoch=32-monitor-val_acc1=62.54399871826172.ckpt",
294
+ )
lightning_model.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as L
3
+ from timm import create_model
4
+
5
+ class LitClassification(L.LightningModule):
6
+ def __init__(self, drop_path=0.05):
7
+ super().__init__()
8
+ self.model = create_model(
9
+ "resnet50", pretrained=False, drop_path_rate=drop_path
10
+ )
11
+ self.loss_fn = torch.nn.CrossEntropyLoss()
12
+
13
+ def forward(self, x):
14
+ return self.model(x)
15
+
16
+ def training_step(self, batch, batch_idx):
17
+ images, targets = batch["image"], batch["targets"]
18
+ outputs = self.model(images)
19
+ loss = self.loss_fn(outputs, targets)
20
+ acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
21
+ self.log("train_loss", loss)
22
+ self.log(
23
+ "train_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True, logger=True
24
+ )
25
+ self.log("train_acc5", acc5, on_step=True, on_epoch=True, logger=True)
26
+ return loss
27
+
28
+ def validation_step(self, batch, batch_idx):
29
+ images, targets = batch["image"], batch["targets"]
30
+ outputs = self(images)
31
+ loss = self.loss_fn(outputs, targets)
32
+
33
+ acc1, acc5 = self.__accuracy(outputs, targets, topk=(1, 5))
34
+ self.log("valid_loss", loss)
35
+ self.log("val_acc1", acc1, on_step=True, prog_bar=True, on_epoch=True)
36
+ self.log("val_acc5", acc5, on_step=True, on_epoch=True)
37
+
38
+ @staticmethod
39
+ def __accuracy(output, target, topk=(1,)):
40
+ """Computes the accuracy over the k top predictions for the specified values of k."""
41
+ with torch.no_grad():
42
+ maxk = max(topk)
43
+ batch_size = target.size(0)
44
+
45
+ _, pred = output.topk(maxk, 1, True, True)
46
+ pred = pred.t()
47
+ correct = pred.eq(target.view(1, -1).expand_as(pred))
48
+
49
+ res = []
50
+ for k in topk:
51
+ correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
52
+ res.append(correct_k.mul_(100.0 / batch_size))
53
+ return res
sample_imgs/stock-photo-large-hot-dog.jpg ADDED