Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import albumentations
|
6 |
+
import pandas as pd
|
7 |
+
from lightning_model import LitClassification
|
8 |
+
|
9 |
+
# Load class labels
|
10 |
+
df = pd.read_csv("imagenet_class_labels.csv")
|
11 |
+
class_labels = df['Labels'].tolist()
|
12 |
+
|
13 |
+
# Initialize model and load checkpoint
|
14 |
+
model = LitClassification()
|
15 |
+
checkpoint = torch.load("bestmodel-epoch=46-monitor-val_acc1=63.7760009765625.ckpt",
|
16 |
+
map_location=torch.device('cpu')) # Load to CPU by default
|
17 |
+
model.load_state_dict(checkpoint['state_dict'])
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
# Image preprocessing
|
21 |
+
valid_aug = albumentations.Compose(
|
22 |
+
[
|
23 |
+
albumentations.Resize(224, 224, p=1),
|
24 |
+
albumentations.Normalize(
|
25 |
+
mean=[0.485, 0.456, 0.406],
|
26 |
+
std=[0.229, 0.224, 0.225],
|
27 |
+
max_pixel_value=255.0,
|
28 |
+
p=1.0,
|
29 |
+
),
|
30 |
+
],
|
31 |
+
p=1.0,
|
32 |
+
)
|
33 |
+
|
34 |
+
def preprocess_image(image):
|
35 |
+
# Convert to RGB if needed
|
36 |
+
if image.mode != "RGB":
|
37 |
+
image = image.convert("RGB")
|
38 |
+
|
39 |
+
# Convert to numpy array
|
40 |
+
image = np.array(image)
|
41 |
+
|
42 |
+
# Center crop 95% area
|
43 |
+
H, W, C = image.shape
|
44 |
+
image = image[int(0.04 * H) : int(0.96 * H), int(0.04 * W) : int(0.96 * W), :]
|
45 |
+
|
46 |
+
# Apply augmentations
|
47 |
+
augmented = valid_aug(image=image)
|
48 |
+
image = augmented["image"]
|
49 |
+
|
50 |
+
# Convert to tensor and add batch dimension
|
51 |
+
image = torch.tensor(image.transpose(2, 0, 1), dtype=torch.float).unsqueeze(0)
|
52 |
+
return image
|
53 |
+
|
54 |
+
def predict(image):
|
55 |
+
# Preprocess the image
|
56 |
+
processed_image = preprocess_image(image)
|
57 |
+
|
58 |
+
# Get model prediction
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = model(processed_image)
|
61 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
62 |
+
|
63 |
+
# Get top 5 predictions
|
64 |
+
top5_prob, top5_indices = torch.topk(probabilities, 5)
|
65 |
+
|
66 |
+
# Convert predictions to labels and probabilities
|
67 |
+
results = {
|
68 |
+
class_labels[idx]: float(prob)
|
69 |
+
for prob, idx in zip(top5_prob[0], top5_indices[0])
|
70 |
+
}
|
71 |
+
|
72 |
+
return results
|
73 |
+
|
74 |
+
# Create Gradio interface
|
75 |
+
iface = gr.Interface(
|
76 |
+
fn=predict,
|
77 |
+
inputs=gr.Image(type="pil"),
|
78 |
+
outputs=gr.Label(num_top_classes=5),
|
79 |
+
examples=["sample_imgs/stock-photo-large-hot-dog.jpg"],
|
80 |
+
title="ImageNet Classification with ResNet50",
|
81 |
+
description="Upload an image to classify it into one of 1000 ImageNet categories."
|
82 |
+
)
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
iface.launch()
|