nidhibodar11's picture
integrated with pinecone
080536a verified
raw
history blame
3.8 kB
# Langchain imports
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_pinecone import PineconeVectorStore
# Embedding and model import
# Other
import streamlit as st
import os
import time
from PyPDF2 import PdfReader
import tempfile
import pdfplumber
st.title("Ask questions from your PDF(s) or website")
option = None
# Prompt user to choose between PDFs or website
option = st.radio("Choose input type:", ("PDF(s)", "Website"), index=None)
def get_pdf_processed(pdf_docs):
text = ""
for pdf in pdf_docs:
with pdfplumber.open(pdf) as pdf_file:
for page in pdf_file.pages:
text += page.extract_text()
return text
def llm_model():
# llm = ChatGroq(model="mixtral-8x7b-32768",groq_api_key=st.secrets['GROQ_API_KEY'])
llm = ChatGroq(model="mixtral-8x7b-32768",groq_api_key=groq_api_key)
prompt = ChatPromptTemplate.from_template(
"""
Answer the question based on the provided context only.
Please provide the most accurate response based on the question
<context>
{context}
</context>
Questions:{input}
"""
)
document_chain = create_stuff_documents_chain(llm,prompt)
retriever = st.session_state.vector.as_retriever() if st.session_state.vector else None
retrieval_chain = create_retrieval_chain(retriever,document_chain)
prompt = st.text_input("Input your question here")
if prompt:
start = time.process_time()
response = retrieval_chain.invoke({"input":prompt})
st.write(response['answer'])
st.write("Response time: ", time.process_time() - start)
# st.session_state.embeddings =GoogleGenerativeAIEmbeddings(model = 'models/embedding-001',google_api_key=st.secrets['GOOGLE_API_KEY'])
model_name = "all-MiniLM-L6-v2"
st.session_state.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
index_name = "myindex"
st.session_state.vector = PineconeVectorStore(index_name=index_name, embedding=st.session_state.embeddings)
if option:
if option == "Website":
website_link = st.text_input("Enter the website link:")
if website_link:
with st.spinner("Loading website content..."):
st.session_state.loader = WebBaseLoader(website_link)
st.session_state.docs = st.session_state.loader.load()
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
st.session_state.vector = PineconeVectorStore.from_documents(st.session_state.final_documents, index_name=index_name, embedding = st.session_state.embeddings)
st.success("Done!")
llm_model()
elif option == "PDF(s)":
pdf_files = st.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
if pdf_files:
with st.spinner("Loading pdf..."):
st.session_state.docs = get_pdf_processed(pdf_files)
st.session_state.final_documents = st.session_state.text_splitter.split_text(st.session_state.docs)
st.session_state.vector = PineconeVectorStore.from_texts(st.session_state.final_documents, index_name=index_name, embedding = st.session_state.embeddings)
st.success("Done!")
st.empty()
llm_model()