Spaces:
Runtime error
Runtime error
integrated with pinecone
Browse files
app.py
CHANGED
|
@@ -1,39 +1,40 @@
|
|
| 1 |
# Langchain imports
|
| 2 |
-
from
|
| 3 |
from langchain_community.document_loaders import WebBaseLoader
|
|
|
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 6 |
from langchain_core.prompts import ChatPromptTemplate
|
| 7 |
from langchain.chains import create_retrieval_chain
|
|
|
|
| 8 |
|
| 9 |
-
# Embedding and model
|
| 10 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 11 |
-
from langchain_groq import ChatGroq
|
| 12 |
-
|
| 13 |
# Other
|
| 14 |
import streamlit as st
|
| 15 |
import os
|
| 16 |
import time
|
| 17 |
from PyPDF2 import PdfReader
|
| 18 |
import tempfile
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
st.title("Ask
|
| 21 |
option = None
|
| 22 |
|
| 23 |
# Prompt user to choose between PDFs or website
|
| 24 |
option = st.radio("Choose input type:", ("PDF(s)", "Website"), index=None)
|
| 25 |
|
| 26 |
-
|
| 27 |
def get_pdf_processed(pdf_docs):
|
| 28 |
-
text=""
|
| 29 |
for pdf in pdf_docs:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
return text
|
| 34 |
|
| 35 |
def llm_model():
|
| 36 |
-
llm = ChatGroq(model="mixtral-8x7b-32768")
|
|
|
|
| 37 |
prompt = ChatPromptTemplate.from_template(
|
| 38 |
"""
|
| 39 |
Answer the question based on the provided context only.
|
|
@@ -51,36 +52,42 @@ def llm_model():
|
|
| 51 |
prompt = st.text_input("Input your question here")
|
| 52 |
|
| 53 |
if prompt:
|
| 54 |
-
|
| 55 |
-
start =time.process_time()
|
| 56 |
response = retrieval_chain.invoke({"input":prompt})
|
| 57 |
st.write(response['answer'])
|
| 58 |
st.write("Response time: ", time.process_time() - start)
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
st.write("-----------------------------")
|
| 64 |
|
| 65 |
-
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model = 'models/embedding-001')
|
| 66 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
if option:
|
| 69 |
if option == "Website":
|
| 70 |
website_link = st.text_input("Enter the website link:")
|
| 71 |
if website_link:
|
| 72 |
-
st.
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
elif option == "PDF(s)":
|
| 79 |
pdf_files = st.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
|
| 80 |
if pdf_files:
|
| 81 |
-
st.
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
llm_model()
|
| 85 |
|
| 86 |
|
|
|
|
| 1 |
# Langchain imports
|
| 2 |
+
from langchain_groq import ChatGroq
|
| 3 |
from langchain_community.document_loaders import WebBaseLoader
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 7 |
from langchain_core.prompts import ChatPromptTemplate
|
| 8 |
from langchain.chains import create_retrieval_chain
|
| 9 |
+
from langchain_pinecone import PineconeVectorStore
|
| 10 |
|
| 11 |
+
# Embedding and model import
|
|
|
|
|
|
|
|
|
|
| 12 |
# Other
|
| 13 |
import streamlit as st
|
| 14 |
import os
|
| 15 |
import time
|
| 16 |
from PyPDF2 import PdfReader
|
| 17 |
import tempfile
|
| 18 |
+
import pdfplumber
|
| 19 |
+
|
| 20 |
|
| 21 |
+
st.title("Ask questions from your PDF(s) or website")
|
| 22 |
option = None
|
| 23 |
|
| 24 |
# Prompt user to choose between PDFs or website
|
| 25 |
option = st.radio("Choose input type:", ("PDF(s)", "Website"), index=None)
|
| 26 |
|
|
|
|
| 27 |
def get_pdf_processed(pdf_docs):
|
| 28 |
+
text = ""
|
| 29 |
for pdf in pdf_docs:
|
| 30 |
+
with pdfplumber.open(pdf) as pdf_file:
|
| 31 |
+
for page in pdf_file.pages:
|
| 32 |
+
text += page.extract_text()
|
| 33 |
return text
|
| 34 |
|
| 35 |
def llm_model():
|
| 36 |
+
# llm = ChatGroq(model="mixtral-8x7b-32768",groq_api_key=st.secrets['GROQ_API_KEY'])
|
| 37 |
+
llm = ChatGroq(model="mixtral-8x7b-32768",groq_api_key=groq_api_key)
|
| 38 |
prompt = ChatPromptTemplate.from_template(
|
| 39 |
"""
|
| 40 |
Answer the question based on the provided context only.
|
|
|
|
| 52 |
prompt = st.text_input("Input your question here")
|
| 53 |
|
| 54 |
if prompt:
|
| 55 |
+
start = time.process_time()
|
|
|
|
| 56 |
response = retrieval_chain.invoke({"input":prompt})
|
| 57 |
st.write(response['answer'])
|
| 58 |
st.write("Response time: ", time.process_time() - start)
|
| 59 |
|
| 60 |
+
# st.session_state.embeddings =GoogleGenerativeAIEmbeddings(model = 'models/embedding-001',google_api_key=st.secrets['GOOGLE_API_KEY'])
|
| 61 |
+
model_name = "all-MiniLM-L6-v2"
|
| 62 |
+
st.session_state.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
|
|
|
| 63 |
|
|
|
|
| 64 |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size =1000, chunk_overlap= 200)
|
| 65 |
|
| 66 |
+
index_name = "myindex"
|
| 67 |
+
st.session_state.vector = PineconeVectorStore(index_name=index_name, embedding=st.session_state.embeddings)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
if option:
|
| 71 |
if option == "Website":
|
| 72 |
website_link = st.text_input("Enter the website link:")
|
| 73 |
if website_link:
|
| 74 |
+
with st.spinner("Loading website content..."):
|
| 75 |
+
st.session_state.loader = WebBaseLoader(website_link)
|
| 76 |
+
st.session_state.docs = st.session_state.loader.load()
|
| 77 |
+
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
| 78 |
+
st.session_state.vector = PineconeVectorStore.from_documents(st.session_state.final_documents, index_name=index_name, embedding = st.session_state.embeddings)
|
| 79 |
+
st.success("Done!")
|
| 80 |
+
llm_model()
|
| 81 |
+
|
| 82 |
elif option == "PDF(s)":
|
| 83 |
pdf_files = st.file_uploader("Upload your PDF files", type=["pdf"], accept_multiple_files=True)
|
| 84 |
if pdf_files:
|
| 85 |
+
with st.spinner("Loading pdf..."):
|
| 86 |
+
st.session_state.docs = get_pdf_processed(pdf_files)
|
| 87 |
+
st.session_state.final_documents = st.session_state.text_splitter.split_text(st.session_state.docs)
|
| 88 |
+
st.session_state.vector = PineconeVectorStore.from_texts(st.session_state.final_documents, index_name=index_name, embedding = st.session_state.embeddings)
|
| 89 |
+
st.success("Done!")
|
| 90 |
+
st.empty()
|
| 91 |
llm_model()
|
| 92 |
|
| 93 |
|