nick-leland commited on
Commit
60e1d24
·
1 Parent(s): db06c26

New iteration

Browse files
Files changed (1) hide show
  1. app.py +27 -14
app.py CHANGED
@@ -24,15 +24,24 @@ EXPECTED_COLUMNS.extend([f'games_{i}' for i in games_ids])
24
  EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])
25
 
26
  def load_reference_data(player_id):
27
- """Load reference prediction data for comparison"""
28
  try:
 
29
  ref_df = pd.read_csv(f"{player_id}.csv", encoding='utf-8')
30
- print("Reference data columns:", ref_df.columns)
31
- print("Reference data values:", ref_df.iloc[-1])
32
- return ref_df.iloc[-1][f"{player_id}_S34"]
 
 
 
 
 
 
 
 
33
  except Exception as e:
34
  print(f"Could not load reference data: {e}")
35
- return None
36
 
37
  def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
38
  """Creates a DataFrame in the expected format for the model"""
@@ -128,11 +137,19 @@ def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
128
  try:
129
  # Extract player_id for reference data
130
  player_id = user_id.split("/")[-1] if "/" in user_id else user_id
131
- reference_cost = load_reference_data(player_id)
132
 
133
  # Prepare the player data
134
  processed_data = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
135
 
 
 
 
 
 
 
 
 
136
  # Load and use the model
137
  model_path = Path("model/rd2l_forest.onnx")
138
  if not model_path.exists():
@@ -140,10 +157,6 @@ def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
140
 
141
  session = ort.InferenceSession(str(model_path))
142
 
143
- # Debug information
144
- print("\nModel Input Information:")
145
- print("Processed data shape:", processed_data.shape)
146
-
147
  # Make prediction
148
  input_name = session.get_inputs()[0].name
149
  prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
@@ -156,11 +169,11 @@ def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
156
  total_winrate = hero_stats.get('total_winrate', 'N/A')
157
 
158
  comparison = ""
159
- if reference_cost is not None:
160
- diff = abs(predicted_cost - reference_cost)
161
  comparison = f"""
162
- Reference Cost: {reference_cost}
163
- Difference: {diff:.2f} ({(diff/reference_cost*100):.1f}% {'higher' if predicted_cost > reference_cost else 'lower'})"""
164
 
165
  return f"""Predicted Cost: {predicted_cost}{comparison}
166
 
 
24
  EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])
25
 
26
  def load_reference_data(player_id):
27
+ """Load reference prediction data and input features"""
28
  try:
29
+ # Read the full CSV to get both input features and prediction
30
  ref_df = pd.read_csv(f"{player_id}.csv", encoding='utf-8')
31
+
32
+ # Extract the features
33
+ features = ref_df[ref_df.index != 'Predicted_Cost']
34
+ print("\nReference features:")
35
+ print(features)
36
+
37
+ # Get the prediction from the last row
38
+ prediction = ref_df.iloc[-1][f"{player_id}_S34"]
39
+ print(f"Reference prediction: {prediction}")
40
+
41
+ return features, prediction
42
  except Exception as e:
43
  print(f"Could not load reference data: {e}")
44
+ return None, None
45
 
46
  def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
47
  """Creates a DataFrame in the expected format for the model"""
 
137
  try:
138
  # Extract player_id for reference data
139
  player_id = user_id.split("/")[-1] if "/" in user_id else user_id
140
+ reference_features, reference_prediction = load_reference_data(player_id)
141
 
142
  # Prepare the player data
143
  processed_data = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
144
 
145
+ print("\nComparing processed data with reference:")
146
+ if reference_features is not None:
147
+ for col in processed_data.columns:
148
+ if col in reference_features.index:
149
+ print(f"{col}:")
150
+ print(f" Our value: {processed_data[col].iloc[0]}")
151
+ print(f" Ref value: {reference_features.loc[col, player_id + '_S34']}")
152
+
153
  # Load and use the model
154
  model_path = Path("model/rd2l_forest.onnx")
155
  if not model_path.exists():
 
157
 
158
  session = ort.InferenceSession(str(model_path))
159
 
 
 
 
 
160
  # Make prediction
161
  input_name = session.get_inputs()[0].name
162
  prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
 
169
  total_winrate = hero_stats.get('total_winrate', 'N/A')
170
 
171
  comparison = ""
172
+ if reference_prediction is not None:
173
+ diff = abs(predicted_cost - reference_prediction)
174
  comparison = f"""
175
+ Reference Cost: {reference_prediction}
176
+ Difference: {diff:.2f} ({(diff/reference_prediction*100):.1f}% {'higher' if predicted_cost > reference_prediction else 'lower'})"""
177
 
178
  return f"""Predicted Cost: {predicted_cost}{comparison}
179