Spaces:
Sleeping
Sleeping
Commit
·
db06c26
1
Parent(s):
fb39151
Adding the test file
Browse files
app.py
CHANGED
@@ -26,7 +26,9 @@ EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])
|
|
26 |
def load_reference_data(player_id):
|
27 |
"""Load reference prediction data for comparison"""
|
28 |
try:
|
29 |
-
ref_df = pd.read_csv(f"{player_id}.csv")
|
|
|
|
|
30 |
return ref_df.iloc[-1][f"{player_id}_S34"]
|
31 |
except Exception as e:
|
32 |
print(f"Could not load reference data: {e}")
|
@@ -66,7 +68,7 @@ def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, com
|
|
66 |
|
67 |
# Get statistics from league data
|
68 |
try:
|
69 |
-
captains_df = pd.read_csv("S34 Draft Sheet
|
70 |
bucks_stats = captains_df["Buck's Bucks"].describe()
|
71 |
cents_stats = captains_df["Crub Cents"].describe()
|
72 |
|
@@ -145,7 +147,9 @@ def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
|
145 |
# Make prediction
|
146 |
input_name = session.get_inputs()[0].name
|
147 |
prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
|
|
|
148 |
predicted_cost = round(float(prediction[0]), 2)
|
|
|
149 |
|
150 |
hero_stats = processed_data.iloc[0]
|
151 |
total_games = hero_stats.get('total_games_played', 'N/A')
|
|
|
26 |
def load_reference_data(player_id):
|
27 |
"""Load reference prediction data for comparison"""
|
28 |
try:
|
29 |
+
ref_df = pd.read_csv(f"{player_id}.csv", encoding='utf-8')
|
30 |
+
print("Reference data columns:", ref_df.columns)
|
31 |
+
print("Reference data values:", ref_df.iloc[-1])
|
32 |
return ref_df.iloc[-1][f"{player_id}_S34"]
|
33 |
except Exception as e:
|
34 |
print(f"Could not load reference data: {e}")
|
|
|
68 |
|
69 |
# Get statistics from league data
|
70 |
try:
|
71 |
+
captains_df = pd.read_csv("S34 Draft Sheet - Captains.csv", encoding='utf-8')
|
72 |
bucks_stats = captains_df["Buck's Bucks"].describe()
|
73 |
cents_stats = captains_df["Crub Cents"].describe()
|
74 |
|
|
|
147 |
# Make prediction
|
148 |
input_name = session.get_inputs()[0].name
|
149 |
prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
|
150 |
+
print("\nPrediction output:", prediction)
|
151 |
predicted_cost = round(float(prediction[0]), 2)
|
152 |
+
print("Predicted cost:", predicted_cost)
|
153 |
|
154 |
hero_stats = processed_data.iloc[0]
|
155 |
total_games = hero_stats.get('total_games_played', 'N/A')
|