nick-leland commited on
Commit
4980c86
·
1 Parent(s): 60e1d24

Iteration 20

Browse files
Files changed (1) hide show
  1. app.py +18 -15
app.py CHANGED
@@ -27,18 +27,18 @@ def load_reference_data(player_id):
27
  """Load reference prediction data and input features"""
28
  try:
29
  # Read the full CSV to get both input features and prediction
30
- ref_df = pd.read_csv(f"{player_id}.csv", encoding='utf-8')
31
 
32
- # Extract the features
33
- features = ref_df[ref_df.index != 'Predicted_Cost']
34
- print("\nReference features:")
35
- print(features)
36
 
37
- # Get the prediction from the last row
38
- prediction = ref_df.iloc[-1][f"{player_id}_S34"]
39
- print(f"Reference prediction: {prediction}")
 
40
 
41
- return features, prediction
42
  except Exception as e:
43
  print(f"Could not load reference data: {e}")
44
  return None, None
@@ -144,12 +144,15 @@ def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
144
 
145
  print("\nComparing processed data with reference:")
146
  if reference_features is not None:
147
- for col in processed_data.columns:
148
- if col in reference_features.index:
149
- print(f"{col}:")
150
- print(f" Our value: {processed_data[col].iloc[0]}")
151
- print(f" Ref value: {reference_features.loc[col, player_id + '_S34']}")
152
-
 
 
 
153
  # Load and use the model
154
  model_path = Path("model/rd2l_forest.onnx")
155
  if not model_path.exists():
 
27
  """Load reference prediction data and input features"""
28
  try:
29
  # Read the full CSV to get both input features and prediction
30
+ ref_df = pd.read_csv(f"{player_id}.csv", encoding='utf-8', index_col=0)
31
 
32
+ # Remove the prediction row and convert to a proper format
33
+ features = ref_df[ref_df.index != 'Predicted_Cost'].iloc[:, 0]
34
+ prediction = ref_df.loc['Predicted_Cost', f"{player_id}_S34"]
 
35
 
36
+ print("\nReference data loaded:")
37
+ for idx in ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum']:
38
+ if idx in features.index:
39
+ print(f"{idx}: {features[idx]}")
40
 
41
+ return features, float(prediction)
42
  except Exception as e:
43
  print(f"Could not load reference data: {e}")
44
  return None, None
 
144
 
145
  print("\nComparing processed data with reference:")
146
  if reference_features is not None:
147
+ our_data = processed_data.iloc[0]
148
+ for idx in ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum']:
149
+ our_val = our_data[idx]
150
+ ref_val = reference_features[idx] if idx in reference_features.index else "N/A"
151
+ print(f"{idx}:")
152
+ print(f" Our value: {our_val}")
153
+ print(f" Ref value: {ref_val}")
154
+ if our_val != ref_val and ref_val != "N/A":
155
+ print(f" *** MISMATCH ***")
156
  # Load and use the model
157
  model_path = Path("model/rd2l_forest.onnx")
158
  if not model_path.exists():